摘要
To decrease the performance difference between the actual microscanning thermal imager and the theoretical value, a germanium lens (placed at a certain angle between the infrared focal plane array and infrared lens) dip angle model of flat optical component microscanning is introduced in this letter. The model is the basis for choosing the dip angle of the germanium lens, which is used in the microscanning thermal imager. In addition, the actual dip angle of the germanium lens is chosen according to the model, the infrared lens parameters of the thermal imager, and the germanium lens parameters of manufacture and installation. Only in this manner can the optimal performance of the microscanning thermal imager based on the flat optical component be obtained. Results of the experiments confirm the accuracy of the conclusions above.
To decrease the performance difference between the actual microscanning thermal imager and the theoretical value, a germanium lens (placed at a certain angle between the infrared focal plane array and infrared lens) dip angle model of flat optical component microscanning is introduced in this letter. The model is the basis for choosing the dip angle of the germanium lens, which is used in the microscanning thermal imager. In addition, the actual dip angle of the germanium lens is chosen according to the model, the infrared lens parameters of the thermal imager, and the germanium lens parameters of manufacture and installation. Only in this manner can the optimal performance of the microscanning thermal imager based on the flat optical component be obtained. Results of the experiments confirm the accuracy of the conclusions above.
基金
supported by the National Defense Pre-Research Fund of China (No. 40405050303)
the NationalNatural Science Foundation of Jiangsu, China (No.BK2008049)
the NUST Research Funding (No.2010ZDJH12)