期刊文献+

泡沫铝合金动态弹塑性本构关系的研究(英文) 被引量:9

Elasto-plastic constitutive model of aluminum alloy foam subjected to impact loading
下载PDF
导出
摘要 提出一个多参数的非线性弹塑性唯象本构模型,该模型能够全面地描述泡沫铝合金的典型三阶段变形特征,即线弹性阶段、应力平台阶段和密实化阶段。考虑到密度(相对密度)是泡沫铝这类多孔材料性能表征的最重要参数,在对泡沫铝合金进行各种应变率下的单向压缩实验基础上,确定模型中的参数与相对密度的函数表达式,从而,该模型能系统地描述相对密度、应变率效应对其动态力学行为的影响。模型预测结果和实验结果的对比验证了该模型的可靠性。研究结果可为吸能缓冲及防护结构的优化设计提供技术参考。 A multi-parameter nonlinear elasto-plastic constitutive model which can fully capture the three typical features of stress-strain response, linearity, plasticity-like stress plateau and densification phases was developed. The functional expression of each parameter was determined using uniaxial compression tests for aluminum alloy foams. The parameters of the model can be systematically varied to describe the effect of relative density which may be responsible for the changes in yield stress and hardening-like or softening-like behavior at various strain rates. A comparison between model predictions and experimental results of the aluminum alloy foams was provided to validate the model. It was proved to be useful in the selection of the optimal-density and energy absorption foam for a specific application at impact events.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期449-454,共6页 中国有色金属学报(英文版)
基金 Projects (90716005, 10802055, 10972153) supported by the National Natural Science Foundation of China Project (2007021005) supported by the Natural Science Foundation of Shanxi Province, China Project supported by the Postdoctoral Science Foundation of China Project supported by the Homecomings Foundation, China Project supported by the Top Young Academic Leaders of Higher Learning Institutions of Shanxi, China
关键词 弹塑性本构模型 泡沫铝合金 应变率效应 能量吸收 elasto-plastic constitutive model metallic foam strain rate effect energy absorption
  • 相关文献

参考文献2

二级参考文献25

  • 1Davies E D,Hunter S C.The dynamic compression testing of solids by the method of the split Hopkinson bar[J].Journal Mechanical Physical Solids,1963,11:155-179.
  • 2Lindholm U S,Bessey R L,Smith G V.Effect of strain rate on yield strength,tensile strength and elongation of three aluminum alloys[J].Journal Material JMLSA,1971,6(1):119.
  • 3Lehmhus D,Banhart J.Properties of heat-treated aluminum foams[J].Material Science and Engineering,2003,A349:98-110.
  • 4Simone A E,Gibson L J.Aluminium foams produced by liquid-state processes[J].Acta Materialia,1998,46:3109-3123.
  • 5Brezny R,Green D J.The effect of cell size on the mechanical behaviour of cellular materials[J].Acta Metall Mater,1990,38;2517-2526.
  • 6Gibson L J,Ashby M F.Cellular solids:structures and properties[M].London:Cambridge university,1997.
  • 7Stronge W J,Shin V P W.Micro-dynamics of crushing in cellular solids[J].Journal Engineering Material Technology ASME,1988,110:110-185.
  • 8Deshpande V S,Fleck N A.High strain rate compressive behavior of aluminum alloy foams[J].International Journal Impact Engineering,2000,24:277-298.
  • 9Dannemann K A,Lankford J J.High strain rate compression of closed-cell aluminum foams[J].Materials Science and Engineering,2000,A293:157-164.
  • 10Kanahashi H,Mukai T,Yamada Y,et al.Dynamic compression of an ultra-low density aluminum foam[J].Material Science and Engineering,2000,A280:349-353.

共引文献27

同被引文献144

引证文献9

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部