期刊文献+

锰掺杂对锂离子电池正极材料Li_3V_2(PO_4)_3/C性能的影响(英文) 被引量:3

Effect of Mn-doping on performance of Li_3V_2(PO_4)_3/C cathode material for lithium ion batteries
下载PDF
导出
摘要 采用溶胶-凝胶法合成Li3V2-2/3xMnx(PO4)3(0≤x≤0.12)。采用XRD、SEM、XPS、恒流充放电和电化学阻抗谱(EIS)研究Mn掺杂对Li3V2(PO4)3/C结构和电化学性能的影响。XRD研究表明:掺杂少量的Mn2+不会影响材料的结构,所有样品均具有单一相态的单斜结构(P21/n空间群)。XPS分析表明:在Li3V1.94Mn0.09(PO4)3/C中,V和Mn的化合价分别为+3和+2,原料中的柠檬酸在煅烧过程中分解成C而残留在Li3V1.94Mn0.09(PO4)3/C中。电化学测试表明:掺杂Mn改善了电极材料的循环性能和倍率性能,正极材料Li3V1.94Mn0.09(PO4)3/C表现出最好的循环稳定性和倍率性能。在40mA/g的放电电流密度下,循环100次后,Li3V1.94Mn0.09(PO4)3/C的放电容量从158.8mA·h/g衰减到120.5mA·h/g,容量保持率为75.9%,而未掺杂样品的放电容量从164.2mA·h/g衰减到72.6mA·h/g,容量保持率为44.2%。当放电电流密度增加到1C时,Li3V1.94Mn0.09(PO4)3/C的初始放电容量仍能达到146.4mA·h/g,循环100次后,放电容量保持为107.5mA·h/g。EIS测试表明,掺杂适量的Mn2+减小了电荷转移阻抗,这有利于Li+的脱嵌。 Li3V2-2/3xMnx(PO4)3(0≤x≤0.12) powders were synthesized by sol-gel method. The effect of Mn2+-doping on the structure and electrochemical performances of Li3V2(PO4)3/C was characterized by XRD, SEM, XPS, galvanostatic charge /discharge and electrochemical impedance spectroscopy(EIS). The XRD study shows that a small amount of Mn2+-doped does not alter the structure of Li3V2(PO4)3/C materials, and all Mn2+-doped samples are of pure single phase with a monoclinic structure (space group P21/n). The XPS analysis indicates that valences state of V and Mn are +3 and +2 in Li3V1.94Mn0.09(PO4)3/C, respectively, and the citric acid in raw materials was decomposed into carbon during calcination, and residual carbon exists in Li3V1.94Mn0.09(PO4)/C. The results of electrochemical measurements show that Mn2+-doping can improve the cyclic stability and rate performance of these cathode materials. The Li3V1.94Mn0.09(PO4)3/C cathode material shows the best cyclic stability and rate performance. For example, at the discharge current density of 40 mA/g, after 100 cycles, the discharge capacity of Li3V1.94Mn0.09(PO4)3/C declines from initial 158.8 mA·h/g to 120.5 mA·h/g with a capacity retention of 75.9%; however, that of the Mn-undoed sample declines from 164.2 mA·h/g to 72.6 mA·h/g with a capacity retention of 44.2%. When the discharge current is increased up to 1C, the intial discharge capacity of Li3V1.94Mn0.09(PO4)3/C still reaches 146.4 mA·h/g, and the discharge capacity maintains at 107.5 mA·h/g after 100 cycles. The EIS measurement indicates that Mn2+-doping with a appropriate amount of Mn2+ decreases the charge transfer resistance, which is favorable for the insertion/extraction of Li+.
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期523-528,共6页 中国有色金属学报(英文版)
基金 Project (20771100) supported by the National Natural Science Foundation of China
关键词 锂离子电池 正极材料 LI3V2(PO4)3 溶胶-凝胶 掺杂 lithium ion batteries cathode materials Li3V2(PO4)3 sol-gel doping
  • 相关文献

参考文献20

  • 1钟胜奎,刘乐通,姜吉琼,李延伟,王健,刘洁群,李艳红.Preparation and electrochemical properties of Y-doped Li_3V_2(PO_4)_3 cathode materials for lithium batteries[J].Journal of Rare Earths,2009,27(1):134-137. 被引量:11
  • 2杨书廷,刘玉霞,尹艳红,王辉,王涛.钽离子掺杂对LiFePO_4/C物理和电化学性能的影响[J].无机化学学报,2007,23(7):1165-1168. 被引量:11
  • 3刘素琴,李世彩,黄可龙,陈朝晖.Ti^(4+)离子掺杂对Li_3V_2(PO_4)_3晶体结构与性能的影响[J].物理化学学报,2007,23(4):537-542. 被引量:21
  • 4ZHONG Sheng-kui,,YIN Zhou-lan,WANG Zhi-xing,GUO Hua-jun,LI Xin-hai.Synthesis and characterization of novel cathode material Li3V2(P04)3 by carbon- thermal reduction method. Transactions of Nonferrous Metals Society of China . 2006
  • 5LI Y Z,ZHOU Z,REN M M,GAO X P,YAN J.Electrochemical performance of nano-crystalline Li3V2(PO4)3/carbon composite material synthesized by a novel sol-gel method. Electrochimica Acta . 2006
  • 6FU P,ZHAO Y M,DONG Y Z,AN X N,SHEN G P.Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine. Journal of Power Sources . 2006
  • 7PISTOIA G,ANTONINI A,ROSATI R,BELLITTO C.Effect of partial Ga3+ substitution for Mn3+ in LiMn2O4 on its behaviour as a cathode for Li cells. Journal of Electroanalytical Chemistry . 1996
  • 8MI C H,ZHANG X G,ZHAO X B,LI H L.synthesis and performance of LiMn0.6Fe0.4PO4/nano-carbon webs composite cathode. Journal of Materials Science . 2006
  • 9Sato M,Ohkawa H,et al.3</sub>V<sub>2</sub> (PO<sub>4</sub>)<sub>3</sub> by stabilizing the orthorhombic phase at room temperature&amp;sid=Solid State Ionics&amp;aufirst=Sato M');&#xA; ">Enhancement of discharge capacity of Li<sub>3</sub>V<sub>2</sub> (PO<sub>4</sub>)<sub>3</sub> by stabilizing the orthorhombic phase at room temperature. Solid State Ionics . 2000
  • 10Saidi M Y,Barker J,Huang H,et al.Electrochemical properties oflithium vanadium phosphate as a cathode material for lithium-ionbatteries. Electrochemical and Solid State Letters . 2002

二级参考文献43

共引文献39

同被引文献50

  • 1Yang Xia,Wenkui Zhang,Hui Huang,Yongping Gan,Chongge Li,Xinyong Tao.Synthesis and electrochemical properties of Nb-doped Li 3 V 2 (PO 4 ) 3 /C cathode materials for lithium-ion batteries[J].Materials Science & Engineering B.2011(8)
  • 2WHITTINGHAM M S. Lithium batteries and cathode materials [J]. Chemical Reviews, 2004,104(10): 4271-4302.
  • 3LI H, WANG Z X, CHEN L Q, HUANG X J. Research on advanced materials for Li" ion batteries [J]. Advanced Materials, 2009, 21(45): 4593-4607.
  • 4YAN J, YUAN W, TANG Z Y, XIE H, MAO W F, MA L. Synthesis and electrochemical performance of Li3 V 2(P04)J-xCIxIC cathode materials for lithium-ion batteries [J]. Journal of Power Sources, 2012,209:251-256.
  • 5WANG J, ZHENG S Q, MIRABBOS HOJAMBERDIEV, REN B,XU Y H, SHAO C Y. Effect of Ni doping on electrochemical performance of Li3VZ(P04)J/C cathode material prepared by polyol process [J]. Ceramics International, 2014, 40(7): 11251-11259.
  • 6xu Y H, SHAO C Y. Effect of Ni doping on electrochemical performance of Li3VZ(P04)J/C cathode material prepared by polyol process [J]. Ceramics International, 2014, 40(7): 11251-11259.
  • 7WANG Y G, WANG Y R, HOSONO E, WANG K X, ZHOU H S. The design of a LiFePO';carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method [J]. Angewandte Chemie, 2008,120(39): 7571-7575.
  • 8YAMADA A, HOSOYA M, CHUNG S C, KUDO Y, HINOKUMA K, LIU K Y, NISHI Y. Olivine-type cathodes: Achievements and problems [J]. Journal of Power Sources, 2003, 119: 232-238.
  • 9HUANG H, YIN S C, KERR T, NAZAR L F. Nanostructured composites: A high capacity, fast rate Li, V z(P04)J/carbon cathode for rechargeable lithium batteries [J]. Advanced Materials, 2002, 14(21): 1525-1528.
  • 10GAUBICHER J, WURM C, GOWARD G, MASQUELIER C, NAZAR L. Rhombohedral form of LiNz(P04)J as a cathode in Li-ion batteries [J]. Chemistry of Materials, 2000, 12(11): 3240-3242.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部