期刊文献+

THE INVISCID AND NON-RESISTIVE LIMIT IN THE CAUCHY PROBLEM FOR 3-D NONHOMOGENEOUS INCOMPRESSIBLE MAGNETO-HYDRODYNAMICS 被引量:3

THE INVISCID AND NON-RESISTIVE LIMIT IN THE CAUCHY PROBLEM FOR 3-D NONHOMOGENEOUS INCOMPRESSIBLE MAGNETO-HYDRODYNAMICS
下载PDF
导出
摘要 In this paper,the inviscid and non-resistive limit is justified for the local-in-time solutions to the equations of nonhomogeneous incompressible magneto-hydrodynamics (MHD)in R3.We prove that as the viscosity and resistivity go to zero,the solution of the Cauchy problem for the nonhomogeneous incompressible MHD system converges to the solution of the ideal MHD system.The convergence rate is also obtained simultaneously. In this paper,the inviscid and non-resistive limit is justified for the local-in-time solutions to the equations of nonhomogeneous incompressible magneto-hydrodynamics (MHD)in R3.We prove that as the viscosity and resistivity go to zero,the solution of the Cauchy problem for the nonhomogeneous incompressible MHD system converges to the solution of the ideal MHD system.The convergence rate is also obtained simultaneously.
作者 张剑文
出处 《Acta Mathematica Scientia》 SCIE CSCD 2011年第3期882-896,共15页 数学物理学报(B辑英文版)
基金 partly supported by NSFC(10801111 10971171) the Natural Science Foundation of Fujian Province of China(2010J05011) the Fundamental Research Funds for the Central Universities(2010121006)
关键词 3-D nonhomogeneous incompressible MHD ideal MHD inviscid and non-resistive limit local-in-time solution convergence rate 3-D nonhomogeneous incompressible MHD ideal MHD inviscid and non-resistive limit local-in-time solution convergence rate
  • 相关文献

参考文献1

二级参考文献25

  • 1Barraza.Oscar A.Self-similar solutions in weak LP-spaces of the Navier-Stokes equations.Revista Math Iberoamericana,1996,12:411-439.
  • 2Caffarelli L,Kohn R,Nirenberg L.Partial regularity of suitable weak solution of the Navier-Stokes equations.Comm Pure Appl Math,1982 35:771-837.
  • 3Cannone M.A generalization of a theorem by Kato on Navier-Stokes equations.Revista Math Iberoamericana,1997,13:515-541.
  • 4Cannone M,Karch G.Smooth or singular solutions to the Navier-Stokes system? J Differential Equations,2004,197:247-274.
  • 5Cannone M.Harmonic analysis tools for solving the incompressible Navier-Stokes equations//Friedlander S,Serre D,eds.Handbook of Mathematical Fluid Dynamics.Elsevier,2004.
  • 6Chen Z -M,Xin Z.Homogeneity Criterion for the Navier-Stokes Equations in the whole space.J Math Fluid Mech,2001,3:152-182.
  • 7Duvaut G,Lions J L.Inéquations en thermoélasticité et magnétohydrodynamique.Archive Rational Mech Anal,1972,46:241-279.
  • 8Foias C,Masnley O P,Temam R.New representation of the Navier-Stokes equations governing self-similar homogeneous terbulence.Phys Rev Lett,1983,51:269-315.
  • 9Galdi G P.An Introduction to the Mathematical Theory of Navier-Stokes Equations,Vol 1,Linearized Stationary Problems.Springer Tracts Nat Philos,38.New York:Springer-Verlag,1994.
  • 10Giga Y,Miyakawa T.Navier-Stokes flows in R3 with measure s as initial vorticity and the Morrey spaces.Comm Partial Differ Equas,1989,14:577-618.

共引文献1

同被引文献7

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部