摘要
In this paper,the inviscid and non-resistive limit is justified for the local-in-time solutions to the equations of nonhomogeneous incompressible magneto-hydrodynamics (MHD)in R3.We prove that as the viscosity and resistivity go to zero,the solution of the Cauchy problem for the nonhomogeneous incompressible MHD system converges to the solution of the ideal MHD system.The convergence rate is also obtained simultaneously.
In this paper,the inviscid and non-resistive limit is justified for the local-in-time solutions to the equations of nonhomogeneous incompressible magneto-hydrodynamics (MHD)in R3.We prove that as the viscosity and resistivity go to zero,the solution of the Cauchy problem for the nonhomogeneous incompressible MHD system converges to the solution of the ideal MHD system.The convergence rate is also obtained simultaneously.
基金
partly supported by NSFC(10801111
10971171)
the Natural Science Foundation of Fujian Province of China(2010J05011)
the Fundamental Research Funds for the Central Universities(2010121006)