期刊文献+

A NEW ALGORITHM FOR COMPUTING LARGEST REAL PART EIGENVALUE OF MATRICES:COLLATZ & PERRON-FROBERNIUS' APPROACH

A NEW ALGORITHM FOR COMPUTING LARGEST REAL PART EIGENVALUE OF MATRICES:COLLATZ & PERRON-FROBERNIUS’ APPROACH
下载PDF
导出
摘要 This paper describes a new method and algorithm for the numerical solution of eigenvalues with the largest real part of positive matrices.The method is based on a numerical implementation of Collatz's eigenvalue inclusion theorem for non-negative irreducible matrices.Eigenvalues are analyzed for the studies of the stability of linear systems.Finally, a numerical discussion is given to derive the required number of mathematical operations of the new algorithm. Comparisons between the new algorithm and several well known ones, such as Power, and QR methods, are discussed. This paper describes a new method and algorithm for the numerical solution of eigenvalues with the largest real part of positive matrices.The method is based on a numerical implementation of Collatz's eigenvalue inclusion theorem for non-negative irreducible matrices.Eigenvalues are analyzed for the studies of the stability of linear systems.Finally, a numerical discussion is given to derive the required number of mathematical operations of the new algorithm. Comparisons between the new algorithm and several well known ones, such as Power, and QR methods, are discussed.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2011年第3期1189-1202,共14页 数学物理学报(B辑英文版)
关键词 Collatz’s theorem Perron-Frobernius’theorem EIGENVALUE Collatz’s theorem Perron-Frobernius’theorem eigenvalue
  • 相关文献

参考文献29

  • 1Pham Van At. Reduction of a positive matrix to a quasi-stochastic matrix by a similar variation method. USSR Comput Math Phys, 1971, 11:255-262.
  • 2Birkhoff G, Varga R S. Reactor criticality and non-negative matrices. J Soc Indust Appl Math, 1958, 6: 3540-377.
  • 3Brauer A. The theorems of Lederman and Ostrowsky on positive matrices. Duke Math J, 1957, 24: 265-274.
  • 4Brauer A. A method for the computation of the greatest root of a positive matrix. J Soc Indust Appl Math, 1957, 5:250- 253.
  • 5Bunse W. A class of diagonal transformation methods for the computation of the spectral radius of a nonnegative irreducible matrix. SIAM J Numer Anal, 1981, 18:693-704.
  • 6Collatz L. Einschliessungssatz fuer die charakteristischen Zahlen von Matrizen. Math Z, 1942/1943, 48: 221 -226.
  • 7Elsner L. Verfahren zur Berechnung des Spektralradius nichtnegativer irreducibler matrizen. Computing, 1971, 8:32-39.
  • 8Eisner L. Verfahren zur Berechnung des Spektralradius nichtnegativer irreducibler Matrizen II. Computing, 1972, 9:69-73.
  • 9Faddeev D K, tVaddeeva V N. Computational Methods of Linear Algebra. San Pransisco, London: W H Preeman and Company, 1973.
  • 10Fan Ky. Topological proofs for certain theorems on matrices with non-negative elements. Monatsh Math, 1958, 62:219-237.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部