期刊文献+

5kW太阳模拟器与斯特林发动机吸热器的辐射换热特性研究 被引量:4

Radiative Heat Transfer Characteristics Between 5 kW Solar Simulator and Stirling Engine's Heat Receiver
原文传递
导出
摘要 以设计的5 kW太阳模拟器为光源,加热斯特林发动饥的吸热器。首先以蒙特卡洛光线追迹法确定太阳模拟器与斯特林发动机吸热器间辐射热流分布,然后将辐射热流分布的计算结果以边界条件形式传递给CFD模型,对吸热器的温度分布特性进行数值计算;吸热器壁面温度采用安捷伦数据采集仪及热电偶温度计进行测试,吸热器壁面温度数值模拟结果与实验值的最大误差仅为4.7 K,太阳模拟器最大辐照度可达196个太阳常数,设计的5 kW太阳模拟器满足驱动1kW斯特林发动机的工作需求。 The designed 5 kW solar simulator is used as the light source to heat Stirling engine's heat receiver.First,the radiation heat flux distribution between the solar simulator and the Stirling engine's heat receiver is simulated by Monte Carlo ray-tracing method,Then the resulted radiation flux profiles are subsequently transferred to a CFD code as boundary conditions to numerically simulate the heat receiver's wall temperature distribution:the real wall temperature of Stirling engine's heat receiver is also tested by Agilent 34970A and thermocouples.The maximum error of heat receiver's wall temperature between calculated results and experimental test results is only 4.7 K,the temperature shows symmetrical distribution on the engine's heat receiver wall.The designed solar simulator can achieve 196 solar constant,it can provide enough heat to drive one 1kW Stirling engine.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2011年第6期985-988,共4页 Journal of Engineering Thermophysics
基金 863国家高技术研究发展计划项目(No.2007AA05Z430)
关键词 太阳模拟器 斯特林发动机 辐射换热 蒙特卡洛光线追迹法 温度 solar simulator Stirling engine radiative heat transfer Monte Carlo ray-tracing method temperature
  • 相关文献

参考文献8

  • 1Petrasch J, Coray P, Meier A, et al. A Novel 50 kW 11,000 suns High-Flux Solar Simulator Based on an Ar- ray of Xenon Arc Lamps [J]. Journal of Solar Energy Engineering. 2007, 129(4). 405-411.
  • 2Eddy R. Design and Construction of JPL SSL5B Solar simulator [R]. JPL internal document, 1968-01.
  • 3Feil O G, Fbey H U. Solar Simulation With Rectangulax Beam [C]// Proceedings of the 15th Space Simulation Conference. Williamsburg. NASA CP-3015,1988. 278- 288.
  • 4Brinkman P W. Main Characteristics of the Large Space Simulator (LSS) at ESA/ESTEC [C]// Proceedings of the 13th Space Simulation Conference. Orlando. NASA CP- 2340, 1984.30-51.
  • 5Leutz R, Annen H P. Reverse Ray-tracing Model for the Performance Evaluation of Stationary Solar Concentrators [J]. Solar Energy, 2007, 81.761-767.
  • 6Villafan-Vidales H I, Arancibia-Bulnes C A, Dehesa- Carrasco U, et al. Monte Carlo Radiative Transfer Simulation of a Cavity Solar Reactor for the Reduction of Cerium Oxide [J]. International Journal of Hydrogen Energy, 2009, 34.115-124.
  • 7Reddy K S,Kumar N S. Combined Laminar Natural Convection and Surface Radiation Heat Transfer in a Modified Cavity Receiver of Solar Parabolic Dish [J]. International Journal of Thermal Sciences, 2008, 47.1647-1657.
  • 8Prakash M, Kedare S B, Nayak J K. Investigations on Heat Losses From a Solar Cavity Receiver [J]. Solar Energy, 2009, 83.157-170.

同被引文献18

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部