期刊文献+

人工神经网络-近红外光谱法在线测定白砂糖粒度 被引量:2

On-line determination of white granulated sugar granularity by artificial neural network-near infrared spectroscopy
原文传递
导出
摘要 采用国产漫反射近红外在线分析系统,对广西某糖厂的白砂糖粒度进行了在线测定研究。采用SupNIR-4000型近红外在线分析仪,直接对成品传送带上的白砂糖进行扫描获得光谱数据,测定时间仅需90s。光谱预处理方法"标准化+Savitzky-Golay一阶求导+正交信号校正"效果最佳,人工神经网络(ANN)算法建立模型最佳。结果显示,ANN模型的校正均方根误差(RMSEC)为2.9718,预测均方根误差(RMSEP)为3.5244,粒度预测偏差满足糖厂要求的±5。此法在制糖行业具有广泛的应用前景。 On-line determining white granulated sugar granularity of a sugar factory in Guangxi was carried out using a domestic online near infrared spectroscopic analysis system (SupNIR-4000 NIR analyzer). The spectral data were obtained by scanning the granulated sugar on the belt conveyer with NIR analyzer, the time measured only 90 s. The spectral preprocessing method "Standardization + Savitzky-Golay 1st derivative + orthogonal signal correction (OSC)" was the best and artificial neural network (ANN) modeling was the best. The results showed that ANN model root mean square error of calibration(RMSEC) was 2.9718, the root mean square error of prediction(RMSEP) was 3.5244. the prediction errors was ±5, to meet the sugar factory’s requirement. This method has a wide application prospect in the sugar industry.
出处 《食品科技》 CAS 北大核心 2011年第5期268-271,共4页 Food Science and Technology
关键词 人工神经网络 近红外光谱 白砂糖 粒度 artificial neural network near infrared spectrum(NIRS) white granulated sugar granularity
  • 相关文献

参考文献15

二级参考文献108

共引文献60

同被引文献42

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部