摘要
研究离散时间-周期正系统的性质.从这类系统的特征入手,给出了-周期系统具有正性的完全刻画.在此基础上,建立了p-周期正系统渐近稳定的充分必要条件,并给出了若干等价条件,这些条件为不同场合下的应用提供了方便.同已报道的文献相比,我们的结果具有形式简单和计算量小的特点.
Addressed in this paper is some properties of discrete-time p-periodic positive systems.By exploring the nature of this class of systems,we first completely characterize their positivity,and then establish a necessary and sufficient asymptotic stability condition,followed by several equivalent ones.These conditions can be used flexibly depending on different cases.Compared with some reported references,simple formulation and lower computational burden characterizes our results.
出处
《西南民族大学学报(自然科学版)》
CAS
2011年第3期342-347,共6页
Journal of Southwest Minzu University(Natural Science Edition)
基金
国家自然科学基金资助项目(60974148)
教育部新世纪人才支持计划资助项目(NCET-10-0097)
关键词
p-周期正系统
线性规划
线性矩阵不等式
非负矩阵
p-periodic positive system
linear programming
linear matrix inequality
nonnegative matrix