期刊文献+

关于最大距离可分矩阵的直接方幂(英文)

On direct exponentiation of maximum distance separable matrices
下载PDF
导出
摘要 最大距离可分(MDS)矩阵代表一类在密码学和编码论中有实际应用的、具有一定扩散性质的函数.近来,Murtaza and Ikram提出了一个通过直接方幂生成MDS矩阵的新方法.针对其中指数e=2的一个命题的伪证明,研究了若干隐藏其后的方法论及逻辑问题,进而构造域特征p≥2两种情形下的两类反例. Maximum Distance Separable(MDS) matrices represents a class of functions with certain diffusion properties that have practical applications in cryptography and code theory.Recently,Murtaza and Ikram proposed a novel method of generating MDS matrices via direct exponentiation.This paper investigates some problems in the methodology and logic behind a false proof of one of their propositions where exponent.Furthermore,two classes of counterexamples are constructed for two cases of field characteristics.
出处 《西南民族大学学报(自然科学版)》 CAS 2011年第3期452-455,共4页 Journal of Southwest Minzu University(Natural Science Edition)
基金 国家民委重点项目资助(20100706)
关键词 高级加密标准(AES) 线性码 最大距离可分(MDS)矩阵 Galois域 矩阵的方幂 Advanced Encryption Standard(AES) Linear code Maximum Distance Separable(MDS) matrices Galois field power of a matrix
  • 相关文献

参考文献11

  • 1SHANNON C E. Communication Theory of Secrecy Systems[J]. Bell Syst Technical J, 1949, 28 (4): 656-715.
  • 2MAO W. Modem Cryptography: Theory and Practice[M]. Prentice Hall PTR, Upper Saddle River, N J, 2004.
  • 3MALIK M Y, NO J S. Dynamic MDS Matrices for Substantial Cryptographic Strength[EB/OL] (2011-01-10)[2011-04-15]. Cryptology ePrint Archive: Listing for 2011, Available at http://eprint.iacr.org/2011/177.pdf.
  • 4VERMANI L R. Elements of Algebraic Coding Theory[M]. New York:Chapman and Hall/CRC, 1996.
  • 5DAEMEN J, RIJMEN V. The design of Rijndael: AES, The Advanced Encryption Standard[M]. Berlin:Springer-Verlag, 2002.
  • 6VAUDENAY S. On the Need for Multipermutations: Cryptanalysis of MD4 and SAFER[C]. 2nd International Workshop on Fast Sol, ware Encryption, Leuven, Springer-Verlag, 1994: 286-297. Also available at http://citeseer.ist.psu.edu/vaudenay94need.btml, retrieved 2007- 03-05.
  • 7MURTAZA G, IKRAM N. New Methods of Generating MDS Matrices[C]. In: Proceedings oflCWC 2008, Kuala Lumpur: 129-133.
  • 8MURTAZA G, IKRAM N. Direct Exponent and Scalar Multiplication Classes of an MDS Matrix [EB/OL] (2011-01-10)[2011-04-15]. Cryptology ePrint Archive: Listing for 2011, Available at http://eprint.iacr.org/2011/151.pdf.
  • 9MURTAZA G, KHAN A A, ALAM S W, et al. Fortification of AES with Dynamic Mix-Column Transformation[EB/OL] (2011-01-8)[2011-04-15]. Cryptology ePrint Archive: Listing for 2011, Available at http://eprint, iacr. org/2011 / 184.pdf.
  • 10MDS matrix[DB/OL] (2011-04-10) [2011-04-15 ], Available at http://en, wikipedia.org/wiki/MDS_matrix, 2011-05-12.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部