期刊文献+

基于概率神经网络的TE过程故障诊断 被引量:1

Fault Detection in TE Process Based on Probabllistic Neural Networks
下载PDF
导出
摘要 概率神经网络(PNN)-径向基网络的重要变形,它的学习速度快,很适合于故障检测问题,但是当网络输入样本过大时,网络的计算就会很复杂,计算速度就会很缓慢。本文提出用主元分析(PCA)对过程数据进行降维,然后将处理过的数据作为网络输入,这样使网络的计算速度得到了提高。最后将提出的方法用于田纳西-伊斯曼过程(Tennessee-Eastman Process,TE过程)的故障诊断中,测试结果表明该方法行之有效,易于工程实现。 Probabilistic neural network(PNN)-an important deformation of radial basis network,its learning speed is very suitable for fault detection problems.But when the network input data is too large,the network will be complex to calculate,and calculation speed will be very slow.This paper uses the principal component analysis(PCA) to reduce the dimensions of the process data,and then treated data as input,so the calculation speed of the network will be enhanced.Finally,the method is used for Tennessee-Eastman process fault diagnosis.The test results show that the method is effective,and easy to achieve.
出处 《自动化技术与应用》 2011年第5期78-80,86,共4页 Techniques of Automation and Applications
关键词 故障诊断 概率神经网络 主元分析 TE过程 fault diagnosis probabilistic neural network principal component analysis tennessee eastman model
  • 相关文献

参考文献7

  • 1蒋浩天.工业系统的故障检测与诊断[M].北京:机械工业出版社,2003..
  • 2J.F.MACGREGOR,Statistical process control of multivariate processes[e].In Proc.of the IFAC Int.Symp. on Advanced Control of Chemical Processes,New York, 1994. Pergamon Press.
  • 3A.MORADKHANI,K. AHMADI,Load cell Design and Construct with Fault Detection by Probabilistic Neural Network[C],Proceedings of 2008 IEEE Intermational Conference on Mechatronics and Automation,2008.
  • 4MOHD FAUZI OTHMAN,Hudabiyah Arshad Amari, Online Fault Detection for Power System using Wavelet and PNN[C],2^nd IEEE Intermational Conference on Power and Energy, 2008.
  • 5谷雷,杨青,王大志.概率神经网络在化工过程故障检测中的应用[J].控制工程,2008,15(S1):128-130. 被引量:8
  • 6J.E.JACKSON. ,A User's Guide to Principal Components Analysis[M]. John Wiley & Sons, New York, 1991.
  • 7J.J. DOWNS, E. F Vogel, A plant-wide industrialprocess control problem[J].Computers & Chemical Engineering, 1993, (17) : 245-255.

二级参考文献3

共引文献40

同被引文献11

  • 1周东华,李钢,李元,等.数据驱动的工业过程故障诊断技术——基于主元分析与偏最小二乘的方法[M].北京:科学出版社,2011.
  • 2Kano M,Tanaka S,Hasebe S,et al.Monitoring Independent Components for Fault Detection[J].AIChE Journal,2003,49(4):969-976.
  • 3Huang Guangbin,Zhu Qinyu,Siew C K.Extreme Learning Machine:A New Learning Scheme of Feed Forward Neural Networks[C]//Proceedings of IEEE International Joint Conference on Neural Networks.Washington D.C.,USA:IEEE Press,2004:985-990.
  • 4Huang Guangbin,Zhu Qinyu,Siew C K.Extreme Learning Machine:Theory and Applications[J].Neuro-computing,2006,70(1):489-501.
  • 5Hyvrinen A,Oja E.Independent Component Analysis:Algorithms and Applications[J].Neural Networks,2000,13(4):411-430.
  • 6Chiang L H,Braatz R D,Russell E L.Fault Detection and Diagnosis in Industrial Systems[M].Berlin,Germany:Springer,2001.
  • 7邓万宇,郑庆华,陈琳,许学斌.神经网络极速学习方法研究[J].计算机学报,2010,33(2):279-287. 被引量:162
  • 8丁勇,秦晓明,何寒晖.支持向量机的参数优化及其文本分类中的应用[J].计算机仿真,2010,27(11):187-190. 被引量:15
  • 9李晗,萧德云.基于数据驱动的故障诊断方法综述[J].控制与决策,2011,26(1):1-9. 被引量:262
  • 10樊继聪,王友清,秦泗钊.联合指标独立成分分析在多变量过程故障诊断中的应用[J].自动化学报,2013,39(5):494-501. 被引量:23

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部