期刊文献+

模糊分段光滑图像分割模型及其快速算法 被引量:7

Fuzzy piecewise smooth image segmentation model and a fast algorithm
原文传递
导出
摘要 灰度分布不均图像是图像分割中一个难点,为此提出一种模糊分段光滑(FPS)图像分割模型。借鉴分段光滑Mumford-Shah(MS)模型与模糊聚类思想,新模型通过两个定义在图像域的光滑函数描述区域特征,并利用模糊隶属度函数代替MS模型中的特征函数。同时,边界检测算子的引入能够有效保护图像中的边界信息。数值求解采用分裂Bregman方法与Gauss-Seidel迭代相结合的快速算法。对合成图像以及真实图像分割实验表明,本文算法能够有效分割灰度分布不均图像,同时具有较高的计算效率。 A fuzzy piecewise smooth(FPS) model is proposed aiming at the intensity-inhomogeneous image segmentation.Motivated by piecewise smooth Munford-Shah(MS) model and fuzzy clustering,two smooth functions were used to represent the region characteristics respectively and a fuzzy membership function was adopted to replace the hard membership function of MS model.An edge detection operator was also incorporated into the minimization ernergy function.The new energy is convex for the membership function,and the final segmentation does not depend on the initial contour.For numerical computation,a fast algorithm based on split Bregman method and Gauss-Seidel iteration was employed.Experimental results for synthetic and real images show desirable performance of the proposed method.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2011年第6期931-934,共4页 Journal of Optoelectronics·Laser
基金 国家自然科学基金资助项目(10601068) 全国优秀博士论文资助基金资助项目(2005043)
关键词 图像分割 活动轮廓方法 分段光滑Mumford-Shah(MS)模型 全局最优解 分裂Bregman方法 image segmentation active contour piecewise smooth Mumford-Shah(MS) model global minimizer split Bregman method
  • 相关文献

参考文献4

二级参考文献48

  • 1赵于前,王小芳,李桂源.基于多尺度多结构元素的肝脏图像分割[J].光电子.激光,2009,20(4):563-566. 被引量:12
  • 2Chan T,Vese L. Active contours without edge[J]. IEEE Transaction on Image Processing,2001,10(2) :266-277.
  • 3Vese L,Chan T F. A multiphase level set framework for image segmentation using the Mumford and Shah rnodel[J]. International Journal of Computer Vision,2002,50(3) :271-293.
  • 4Tsai A,Yezzi A,Willsky A S. Curve evolution implementation of the mumford-shah functional for image segmentation,denosing, interpolation,and magnification[J]. IEEE Transaction on Image Processing, 2001,10:1169-1186.
  • 5An Jungha, Rousson Mikael, Chen-yang Xu. λ-convergence approximation to piecewise smooth medical segmentation[A]. Proc: Medical Image Computing[C]. 2007,4792:495-502.
  • 6Alliney S. Digital filters as absolute norm reguiarizers[J]. IEEE Transactions on Signal Prooessing,1992,40(6) :1548-1562. .
  • 7LI Chun-ming,XU Chen-yang,GUI Cang-feng,et al. LeVel set without re-initialization: a new variational formulation [A]. Conference on Computer Vision and Pattern Recognition[C]. 2005,05:1063-1069.
  • 8Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems [J]. Communications on Pure and Applied Mathematics, 1989,42 (5) :577-685.
  • 9Osher S, Sethian J A. Fronts propagating with curvature dependent speed:Algorithms based on Hamilton-Jacobi formulations[J].Journal of Computational Physics, 1988,79 ( 1 ) : 12- 49.
  • 10Malladi R,Sethian J A,Vemuri B C. Shape modeling with front propagation: A level set approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17 (2): 158- 175.

共引文献21

同被引文献96

  • 1赵于前,杨元,王琨.基于模糊集理论的迭代多值化图像分割[J].光电子.激光,2009,20(10):1403-1409. 被引量:8
  • 2刘新,潘振宽,李新照,白洁.医学图像分割技术中变形模型方法的研究综述[J].计算机应用研究,2006,23(8):14-18. 被引量:5
  • 3Yang W, Zeng Z, Zhang S. Application of combining watershed and fast clustering method in image segmentation [A]. Second International Conference on Computer Modeling and Simulation[C]. 2010,3: 170-17~.
  • 4Turksen I B. Review of fuzzy system models with an emphasis on fuzzy functions[J]. Transactions of the institute of Measurement and Control, 2009,31 (1) : 7-31.
  • 5Wu X H,Zhou J J. An improved possibilistic C-means algorithm based on kernel methods[A]. Structural, Syntactic, and Statistical Pattern Recognition[C]. 2006,4109: 783-791.
  • 6Lung H V, Kim J M. A generalized spatial fuzzy c-means algorithm for medical image segmentation[A]. IEEE International Conference on Fuzzy Systems[C], 2009, 409- 414.
  • 7Jaffar M A, Naveed N, Ahmed B, et al. Fuzzy c-means clustering with spatial information for color image segmentation[A]. Third International Conference on Electrical Engineering[C]. 2009,136-141.
  • 8Wang X, Zhang X P. A new localized superpixel Markov random field for image segmentation[A], IEEE International Conference on Multimedia and Expo[C]. 2009,642- 645.
  • 9Chatzis S P,Varvarigou T A. A fuzzy clustering approach toward hidden markov random field models for enhanced spatially constrained image segmentation [J].IEEE Transactions on Fuzzy Systems,2008,16(5) :1351-1361.
  • 10Li,S Z. Markov Random field modeling in image analysis [M]. Thired ed: London: Springer press, 2009,28-30.

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部