期刊文献+

基于人工免疫算法的输电线路故障类型识别新方法 被引量:17

A novel approach of fault type recognition of transmission lines based on artificial immune algorithm
下载PDF
导出
摘要 根据人体免疫系统阴性选择机理,提出一种改进的阴性选择算法,能准确地识别'自我'与'非我',还能识别出不同的故障类型,并克服了传统阴性选择算法知识表达能力差、无法设定匹配阈值、抗噪能力差和搜索效率低等缺点。在分析输电线路故障特征的基础上,首次将阴性选择算法应用于输电线路故障类型识别中,并提出了一种基于故障暂态电流能量的故障类型识别新方案。基于PSCAD/EMTDC的仿真试验结果表明:该故障类型识别方案能快速准确地识别各类故障,并且不易受到故障时刻、过渡电阻、故障位置、系统容量等因素的影响,具有较好的适应性。 According to the negative selection mechanism of the human immune system,an improved negative selection algorithm is presented.The improved algorithm can not only detect the "No-self" successfully,but also be used as classifier to identify different fault types.And the flaws of the traditional artificial negative selection algorithm,such as poor knowledge expression and noise tolerance ability,unable to set the matching threshold and slow search efficiency, are overcome.The improved algorithm is proposed to apply to the fault type recognition of transmission lines based on analyzing transmission line fault characteristic,and a new recognition scheme using faulty transient current energy is put forward.Simulations in PSCAD/EMTDC show that this method can identify the fault type rapidly and accurately and it won’t be affected by faulty time,transition resistance, faulty location,and system capacity, etc.So it will have good adaptability.
出处 《电力系统保护与控制》 EI CSCD 北大核心 2011年第11期95-100,137,共7页 Power System Protection and Control
基金 国家自然科学基金资助项目(50877068) 中央高校基本科研业务费专项资金资助项目(2010XS11)~~
关键词 人工免疫算法 阴性选择算法 故障类型识别 输电线路 artificial immune algorithm negative selection algorithm fault type recognition transmission lines
  • 相关文献

参考文献16

  • 1Youssef O A S. New algorithm to phase selection based on wavelet transforms[J]. IEEE Trans on Power Delivery, 2002, 17 (4) 908-914.
  • 2Zou L, Liu P, Zhao Q. Mathematical morphology based phase selection scheme in digital relaying[J]. IEE Proceedings-Generation, Transmission, and Distribution, 2005, 152 (2): 157-163.
  • 3Zou Li, Zhao Qingchun, Lin Xiangning, et al. Improved phase selector for unbalanced faults during power swings using morphological technique[J]. IEEE Trans on Power Delivery, 2006, 21 (4) : 1847-1855.
  • 4Bo Z Q, Aggarwal R K, Johns A T, et al. A new approach to phase selection using fault generated high frequency noise and neural networks[J]. IEEE Trans on Power Delivery , 1997, 12 (1): 106-115.
  • 5Timmis J, Neal M. An artificial immune system for data analysis[J]. Bio Systems, 2000, 55. 143-150.
  • 6Hofmeyr S A, Forrest S, Architecture for an artificial immune system[J]. Evolutionary Computation, 2000, 8 (4) 443-473.
  • 7Forrest S, Hofmeyr S A. Engineering an immune system[J]. Graft, 2001, 1 (4) : 5-9.
  • 8Timmis J, Neal M. A resource limited artificial immune system for data analysis[J]. Knowledge Based Systems, 2001, 14 (3) : 121-130.
  • 9汤红诚,李著信,武华峰,王考杰.基于人工免疫的异步电机故障诊断系统[J].中国电机工程学报,2005,25(23):158-162. 被引量:12
  • 10熊浩,孙才新,陈伟根,杜林,廖玉祥.电力变压器故障诊断的人工免疫网络分类算法[J].电力系统自动化,2006,30(6):57-60. 被引量:30

二级参考文献94

共引文献100

同被引文献232

引证文献17

二级引证文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部