摘要
研究带启动—关闭期的多重休假M/G/1排队系统,讨论了队长的瞬态和稳态性质.通过引进的"服务员忙期"和使用全概率分解技术,导出了在任意时刻t队长的瞬态分布的L变换的递推表达式和稳态队长分布的递推表达式,以及稳态队长的随机分解结果.
In this paper the M/G/1 queueing system with startup-close periods and multiple vacations is considered.We study the transient and equilibrium properties of the queuelength. By introducing the server busy period and using the total probability decomposition technique,we derive the recursion expression of the L-transformation of the transient queue-length distribution at any time t,and also the recursion expressions of the distribution and stochastic decomposition of the queue-length at a random point in equilibrium.
出处
《数学的实践与认识》
CSCD
北大核心
2011年第10期120-129,共10页
Mathematics in Practice and Theory
基金
国家自然科学基金(70871084)
教育部高校博士点专项基金(200806360001)
关键词
多重休假
启动
关闭
队长分布
全概率分解技术
multiple vacation
startup
close
queue-length distribution
total probability decomposition technique