期刊文献+

关于一个脉冲用药的HIV免疫模型的研究 被引量:1

The Study on A Immunological Model of HIV Infection with Impulsive Dosing Scheme
原文传递
导出
摘要 对一个脉冲用药的HIV免疫模型进行研究,发现在用药间隔足够小时,预防抗化剂的脉冲使用通过使T细胞水平无限接近于未被感染的免疫水平来保持个体的免疫功能,并且文中进一步给出这个合适的用药间隔估计.这对指导AIDS治疗临床实践具有参考意义. In this paper,we study a mathematical model that describes the interaction of HIV infection and CD4~+ T cells within an infected individual,considering the dynamics of CD4~+ T cells interacting with virions,impulisive applied drugs.We find that the impulsive administration of preventive inhibitor has the potential to maintain immune function,in the sense that it is possible to choose a small enough dosing interval so that the population of T cells is arbitrarily close to the level for the uninfected immune system;we can further estimate the suitable dosing intervals in order to maintain a healthy immune system.This is helpful to instruct the clinical practice of AIDS.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第10期160-166,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(10526015 10861003)
关键词 脉冲用药 HIV模型 动力学行为 Impulsive dosing scheme HIV model Dynamics
  • 相关文献

参考文献9

  • 1Perelson A S, Kirschner D E and Boer R D. Dynamics of HIV infection of CD4^+ T cells[J]. Math. Biosci, 1993(114): 81-125.
  • 2Perelson A S and Nelson P W. Mathematical analysis of HIV-I dynamics in vivo[J]. SIAM Review, 1999(41): 3-44.
  • 3Janeway C P, Travers M, Walport and Shlomchik M J. Immunobiology 5: The Immune System in Health and Disease, NewYork: Garland Publishing, 2001.
  • 4Covert D J and Kirschner D. Revisiting early models of the host-pathogen interactions in HIV infection. Commertts Theor. Biol. 2005: 6, 383-411.
  • 5Nowak M A and May R M. Virus Dynamics, Oxford: Oxford University Press. 2002.P.
  • 6erelson A S. Modelling viral and immune system dynamics[J]. Nat. Rev.: Immunol. 2002(2): 28-36.
  • 7Bainov D D & Simeonov P S. System with Impulsive Effect: Stability[M], Theory and Applications (John Wiley & Sons, New York), 1989.
  • 8Laksmikantham V, Bainov D D & Simeonov P S. Theory of Impulsive Differential Equations (World Scientific, Singapore), 1989.
  • 9Ho D D, Neumann A U, Perelson AS, Chen W, Leonard J M, Markowitz M. Rapid turnover of plasma virions and CD4 lymptiocytes in HIV-1 infection[J]. Nature 1995, 373 (6510): 123-126.

同被引文献13

  • 1刘小利,王少杨,翟嵩,庄严,李新红,康文臻,于旭,Marcus Altfeld,Bruce Walker,孙永涛.HAART治疗20例艾滋病患者疗效评估[J].中国艾滋病性病,2006,12(2):101-104. 被引量:27
  • 2赵红心,张福杰,郜桂菊,于兰,卢联合,文毅,韩宁,赵燕,李鑫.国产抗逆转录病毒药物联合中药新血片治疗HIV/AIDS患者24周临床研究[J].中国艾滋病性病,2006,12(4):297-299. 被引量:10
  • 3杜丽华,王玲.AIDS疫苗的研究策略及其进展[J].中国现代医学杂志,2007,17(3):312-316. 被引量:1
  • 4庞国萍,陶凤梅,陈兰荪.具有饱和传染率的脉冲免疫接种SIRS模型分析[J].大连理工大学学报,2007,47(3):460-464. 被引量:10
  • 5Huiyan Zhu,Yang Luo,Meiling Chen.Stability and Hopf bifurcation of a HIV infection model with CTL-response delay[J]. Computers and Mathematics with Applications . 2011 (8)
  • 6Robert J. Smith,B. D. Aggarwala.Can the viral reservoir of latently infected CD4 + T cells be eradicated with antiretroviral HIV drugs?[J]. Journal of Mathematical Biology . 2009 (5)
  • 7Robert J. Smith?,Elissa J. Schwartz.Predicting the potential impact of a cytotoxic T-lymphocyte HIV vaccine: How often should you vaccinate and how strong should the vaccine be?[J]. Mathematical Biosciences . 2008 (2)
  • 8R.J. Smith,L.M. Wahl.Drug resistance in an immunological model of HIV-1 infection with impulsive drug effects[J]. Bulletin of Mathematical Biology . 2005 (4)
  • 9Kaifa Wang,Wendi Wang,Xianning Liu.Viral infection model with periodic lytic immune response[J]. Chaos, Solitons and Fractals . 2005 (1)
  • 10Rebecca V. Culshaw,Shigui Ruan,Raymond J. Spiteri.Optimal HIV treatment by maximising immune response[J]. Journal of Mathematical Biology . 2004 (5)

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部