期刊文献+

大霍尔系数下电离气体与磁场相互作用规律数值研究 被引量:4

NUMERICAL RESEARCH ON THE INTERACTION BETWEEN IONIZED GAS AND MAGNETIC FIELD UNDER HIGH HALL PARAMETER
下载PDF
导出
摘要 通过洛伦兹力与焦耳热耦合流场N-S方程和电势场泊松方程,实现对低磁雷诺数磁流体流场的数值模拟,并考虑霍尔效应和外电路对计算结果的影响.采用无虚拟时间步的LUSGS预处理BI-CGSTAB算法解决了大霍尔系数下泊松方程病态矩阵求解问题.对霍尔系数10~2的量级的高超声速磁流体圆管绕流和进气道隔离段能量沉积两种现象的数值模拟表明,外电路、电极冷却措施、等离子体均匀度对电磁力作用效果影响很大. By coupling Poisson's equation for the electric potential field with flow-field N-S equations through Lorentz force and the joule heat,numerical simulation of magneto-fluid with low magnetic Reynolds number was carried out.The influence of the Hall effect and the external circuit was considered.The Poisson's equation ill-conditioned matrix caused by high Hall parameter was overcomed by LUSGS pretreatment BI-CGSTAB algorithm without pseudo time step.Numerical simulations of two kind of phenomenon,hypersonic magnetofluid flow around a circular cylinder when Hall parameter reaching about 10~2 and the energy deposition in scramjet isolator,indicate that external circuit,electrode cooling measures and plasma uniformity have great influence on the electro-magnetic force.
出处 《力学学报》 EI CSCD 北大核心 2011年第3期453-460,共8页 Chinese Journal of Theoretical and Applied Mechanics
基金 国防基金资助项目(9140A13050109HT7106)~~
关键词 磁流体力学 霍尔效应 数值模拟 高超声速 BI-CGSTAB magneto-hydro-dynamics Hall effect numerical simulation hypersonic BI-CGSTAB
  • 相关文献

参考文献2

二级参考文献25

  • 1[1]Berkhoff, J. C. W., 1972. Computation of Combined Refraction Diffraction, Proc. 13th International Conference Coastal Engineering, Vancouvc, 471 ~ 490.
  • 2[2]Berkhoff, J. C. W., Booy, N. and Radder, A. C., 1982. Verification of numerical wave propagation models for simple harmonic linear water waves, Coastal Engineering, 6, 255 ~ 279.
  • 3[3]Benzi, M., Szyld, D. B. and Van Duial, A., 1999. Orderings for Incomplete Factorization Preconditioning of Nonsymmetrical Problems, SIAM, J. Sci. Comput. 20 (5), 1652~ 1670.
  • 4[4]Ito, T. and Tanimoto, K., 1972. A method of numerical analysis of wave propagaton-application to wave diffraction and refraction, Proc., 13th International Conference Coastal Engineering, Vancouvc, ASCE, 503 ~ 522.
  • 5[5]Kirby, J. T. and Dalrymple, R. A., 1984. Verification of a parabolic equation for propagation of weakly- nonlinear waves, Coastal Engineering, 8, 219~ 232.
  • 6[6]LI Bin and Anastasiou, K., 1992. Efficient Elliptic Solvers for the Mild Slope Equation Using the Multigrid Technique,Coastal Engineering, 16, 245~ 246.
  • 7[7]LI Bin, 1994. A Generalized Conjugate Gradient Model for the Mild Slope Equation, Coastal Engineering, 23, 215~225.
  • 8[8]Panchang, V. G. and Pearce, B. R., 1991. Solution of the Mild-Slope Wave Problem by Iteration, Applied Ocean Research, 13 (4), 187~ 199.
  • 9[9]Van Der Vorst, H. A., 1992. BI-CGSTAB, A Fast and Smoothly Converging Variant of BI-CG for the Solution of Nonsymmetrical Linear System, SIAM, J. Sci. Stat. Comput. 13 (2), 631~644.
  • 10[10]Vuik, C., 1993. Solution of the Discretized Incompressible Navier-Stokes Equations with the GMRES Method, Int. J.Numeri. Methods Fluids, 16, 507~ 523.

共引文献11

同被引文献45

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部