期刊文献+

Fe_3O_4@C/Pt复合纳米粒子的原位合成及其催化性质的研究 被引量:4

In-situ Fabrication of Fe_3O_4@C/Pt Nanocomposite and Investigation of Its Catalytic Activity
原文传递
导出
摘要 采用水热方法分别合成了Fe3O4磁性内核以及Fe3O4@C粒子.并原位合成了Fe3O4@C/Pt复合纳米结构,采用SEM,TEM红外光谱,Raman光谱等手段进行了相关表征.研究了纯Pt纳米粒子以及Fe3O4@C/Pt复合纳米结构催化硼氢化钠(NaBH4)还原对硝基苯酚(4-NP)的反应活性,并利用外加磁场富集的方式对该复合纳米结构催化剂进行回收和循环利用.研究结果表明Fe3O4@C/Pt复合纳米结构的催化性能较纯Pt纳米粒子高,这主要由于Fe3O4的协同效应所致,即Fe3O4和Pt间的电荷转移致使Pt的催化活性提高.该复合型催化剂可实现回收和循环利用,其可循环利用次数约为20次. Magnetic Fe304 and Fe304@C core-shell nanostructures were prepared by the hydrothermal method and the Pt nanoparticles was in situ attached on Fe304@C to form Fe304@C/Pt nanocomposite. The TEM, SEM, FTIR and Raman spectroscopy were employed to characterize the surface morphology and composition. The catalytic activities of pure Pt nanoparticles (2 nm) and Fe304@C/Pt on the reaction of the transformation of 4-nitrophenol to 4-aminophenol in the presence of NaBH4 were investigated. The possibility of recycling on the catalyst was explored by applying an external magnetic field. The results revealed that Fe304@C/Pt exhibited higher catalytic efficiency than that of pure Pt nanoparticles. It was mainly due to the synergetic effect that occurred at the interface of metals and Fe304@C support. The charge transfer from magnetic core to the Pt caused the increase of electron density on Pt and thus improved the reducibility of Fe304 @C/Pt. The nanocomposite catalyst was recyclable for about 20 times.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2011年第9期1060-1064,共5页 Acta Chimica Sinica
基金 国家自然科学基金(Nos.21073128 20973120)资助项目
关键词 四氧化三铁磁性粒子 核壳结构 催化 循环利用 Fe304 magnetic nanoparticles platinum core-shell structures catalysis recycling
  • 相关文献

参考文献15

  • 1Lu, A. H.; Salabas, E. L.; Schuth, F. Angew. Chem., Int. Ed. 2007, 46, 1222.
  • 2Li, Z.; Wei, L.; Gao, M. Y.; Lei, H. Adv. Mater. 2005, 17, 1001.
  • 3Lee, J. H.; Huh, Y. M.; Jun, Y. W.; Seo, J. W.; Jang, J. T.; Song, H. T. Nat. Med. 2007, 13, 95.
  • 4陈帅 韩三阳 姚建林 顾仁敖.化学学报,2010,68:2151-2151.
  • 5Li, Z.; Sun, Q.; Gao, M. Y. Angew. Chem., Int. Ed. 2005, 44, 123.
  • 6Zhang, L. H.; Liu, B. F.; Dong, S. J. J. Phys. Chem. B 2007, 111, 10448.
  • 7Xie, H. Y.; Zuo, C.; Liu, Y.; Zhang, Z. L.; Pang, D. W.; Li, X. L.; Gong, J. P.; Dickinson, C.; Zhou, W. Z. Small 2005, 1,506.
  • 8Park, H. Y.; Schadt, M. J.; Ang, L. Y.; Lim, I. S.; Njoki, P. N.; Kim, S. H.; Jang, M. Y.; Luo, J.; Zhong, C. J. Langmuir 2007, 23, 9050.
  • 9Bao, F.; Li, J. F.; Ren, B.; Yao, J. L.; Gu, R. A.; Tian, Z. Q. J. Phys. Chem. C 2008, 112, 345.
  • 10Atarashi, T.; Kim, Y. S.; Fujita, T.; Nakatsuka, K. J. Magn. Magn. Mater. 1999, 201, 7.

同被引文献23

  • 1蒋挺大.壳聚糖[M].北京:化学工业出版社,2003,7..
  • 2Rahman A., Jonnalagadda S. B. Swift and selective seduction of sitroaromatics to sromatic amines with Ni-Boride-Silica catalysts system at low temperature[J]. Catal. Lett., 2008, 123:264-268.
  • 3Lizana F. C., Quero S. G., et al. Ultra-selective gas phase catalytic hydrogenation of aromatic nitor compounds over Au/Al2O3[J]. Catal. Commun., 2008,9(3):475-481.
  • 4Bawane S.P., Sawant S.B. Hydrogenation of p-nitrophenol to metol using Raney nickel catalyst: Reaction kinetics[J]. Appl. Catal. A-Gen, 2005,293:162-170.
  • 5Lee H. K., et al. Enhancement of catalytic activity of Raney nickel by cobalt addition[J]. Mater. Chem. Phys., 1998, 55(2):89-93.
  • 6Iijima S. Helical Microtubules of Graphitic Carbon [J]. Nature, 1991, 354(6348): 56-58.
  • 7蒋挺大.壳聚糖[M].北京:化学工业出版社,2003:1-22.
  • 8Peniche C, Argiielles-Monal W, Peniche H, et al. Chitosan: an attractive biocompatible polymer for microencapsulation [J]. MacromolBiosci, 2003, 3(10): 511 520.
  • 9Yue Chi, Liang Zhao. In situ auto-reduction of silver nanoparticles in mesoporous carbon with multifunctionalized surfaces [J]. Journal of Materials Chemistry , 2012, 22(1): 13571-13577.
  • 10Gregory G Wildgoose. Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes [J]. Methods and Applications, 2006, 2(2): 182-193.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部