期刊文献+

基于可见/近红外漫反射光谱的土壤有机质含量估算方法研究 被引量:18

Rapid detection method of soil organic matter contents using visible/near infrared diffuse reflectance spectral data
下载PDF
导出
摘要 为研究不同土壤颗粒粒径对可见/近红外光谱分析技术在土壤有机质含量快速检测应用中的影响,获取粒径为0.169-2 mm和〈0.169 mm的2种土壤样本(各53个)的可见/近红外光谱(325-1 075 nm),分别建立各自的主成分-反向传播神经网络(PCA-BPNN)、最小二乘-支持向量机(LS-SVM)和偏最小二乘法(PLS)土壤有机质含量检测模型.结果表明:当土壤粒径为0.169-2 mm时,所建立模型的土壤有机质含量预测相关系数r均在0.84以上,且预测均方根误差(RMSEP)都在0.20以下;而当土壤粒径〈0.169 mm时,所建立模型的预测相关系数r均不超过0.71,而RMSEP都在0.23以上;对于相同粒径的土壤,PLS模型对土壤有机质含量的预测效果优于LS-SVM和PCA-BPNN模型.说明不同土壤颗粒粒径会显著影响可见/近红外光谱对于土壤有机质含量的预测结果. The effect of different soil particle sizes on the visible/near infrared spectra to detect soil organic matter contents was analyzed.The visible/near infrared spectra of soil samples with the particle sizes of 0.169-2 mm and 〈0.169 mm were measured at the range of 325-1 075 nm.Then the principal component analysis-back propagation neural network(PCA-BPNN),least squares-support vector machine(LS-SVM) and partial least squares(PLS) models were established to detect the soil organic matter contents.When the soil particle size range was from 0.169 to 2 mm,the correlation coefficients(r) of prediction of all three models were above 0.84 and root mean square errors of prediction(RMSEP) were below 0.20.When the soil particle size range was smaller than 0.169 mm,the r values of the models were below 0.71 and RMSEPs were above 0.23.When either the soil particle size range was from 0.169 to 2 mm or smaller than 0.169 mm,PLS models obtained better results than LS-SVM and PCA-BPNN models.The overall results show that the difference of soil particle size can significantly affect the prediction results of visible/near infrared spectra to detect the soil organic matter contents.
出处 《浙江大学学报(农业与生命科学版)》 CAS CSCD 北大核心 2011年第3期300-306,共7页 Journal of Zhejiang University:Agriculture and Life Sciences
基金 国家科技支撑计划资助项目(2006BAD10A0902) 国家农业科技成果转化基金资助项目(2009GB23600517) 科技型中小企业技术创新基金资助项目(09C26213303994) 浙江农业科技成果转化资助项目(2008D7009)
关键词 可见/近红外光谱 土壤有机质含量 土壤粒径 反向传播神经网络 最小二乘-支持向量机 偏最小二乘法 visible/near infrared spectra soil organic matter content soil particle size back propagation neural network least squares-support vector machine partial least squares
  • 相关文献

参考文献19

  • 1Frogbrook Z L,Oliver M A.Identifying management zones in agricultural fields using spatially constrained classification of soil and ancillary data[J].Soil Use and Management,2007,23 (1):40-51.
  • 2Bowers S A,Hanks R J.Reflection of radiant energy from soils[J].Soil Science,1965,100 (2):130-138.
  • 3Al-Abbas A H,Swain H H,Baumgardner M F.Relating organic matter and day content to the multispectral radiance of soil[J].Soil Science,1972,114:477-485.
  • 4Krishnan P,Alexander J D,Butler B J,et al.Reflectance technique for predicting soil organic-matter[J].Soil Science Society of America Journal,1980,44(6):1282-1285.
  • 5Krishnan P,Butler BJ,Hummel J.Close-range sensing of soil organic-matter[J].Transactions of the ASAE,1981,24(2):306-311.
  • 6Dalal R C,Henry R J.Simultaneous determination of moisture,organic carbon,and total nitrogen by nearinfrared reflectance sepctrophotometry[J].Soil Science Society of America Journal,1986,50:120-123.
  • 7Morra M J,Hall M H,Freeborn L L.Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy[J].Soil Science Society of America Journal,1991,55:288-291.
  • 8Ben-Dor E,Banin A.Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties[J].Soil Science Society of America Journal,1995,59:364-372.
  • 9Sndduth K A,Hummel J W.Portable,near-infrared spectrophotometer for rapid soil analysis[J].Transactions of tie ASAE,1993,36(1):185-193.
  • 10Reeves J B,McCarty G W,Meisinger J J.Near infrared reflectance spectroscopy for the analysis of agricultural soils[J].Journal of Near Infrared Spectroscopy,1999,7(3):179-193.

二级参考文献83

共引文献236

同被引文献207

引证文献18

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部