期刊文献+

基于局部灰度熵的人体检测方法 被引量:2

Detection of human body based on local gray entropy
下载PDF
导出
摘要 针对造成低对比度环境下运动人体检测困难的两个主要因素:拍摄时光线昏暗和拍摄时距离较远,引入局部灰度熵概念,根据局部灰度熵可以准确地反映样本的离散程度且与样本的灰度均值无关这一原理,提出基于局部灰度熵的人体目标检测算法。建立背景模型,运用泰勒展开式简化局部灰度熵计算公式,计算邻域窗口内运动物体与背景模型的局部灰度熵值之差,通过检测率与虚警率对算法进行的评价,得到两种低对比度情况下可以获取运动人体目标的局部灰度熵差值的最佳阈值。实验结果表明,在低对比度环境下,基于局部灰度熵的人体检测算法能够有效地检测出运动人体目标。 With regard to the two main factors that cause the difficulty of human-detection under the dim contrast environment,a concept of the local gray entropy was introduced,and then an algorithm of human target detection based on local gray entropy was proposed for the reason that the local gray entropy could reflect the discrete level accurately,and it was independent on the average gray.After the background model was established,the local gray entropy difference between the moving objects and background model inside the domain windows was calculated by using calculation formula of local gray entropy simplified through Taylor expansion.And the ratio of detection and the ratio of false-alarm of the algorithm were evaluated.The optimal thresholds on the differential of the local gray entropy which could get the human body under the two conditions of low contrast were obtained.The experimental results show that the algorithm of human target detection based on the trait of the local gray entropy can obtain the moving human targets effectively under the dim contrast environment.
出处 《计算机应用》 CSCD 北大核心 2011年第6期1613-1616,1620,共5页 journal of Computer Applications
关键词 低对比度 局部灰度熵 邻域窗口 人体检测 检测率 虚警率 dim contrast local gray entropy domain window human detection detection ratio false-alarm ratio
  • 相关文献

参考文献17

  • 1DALAL N, TRIGGS B, SCHMID C. Histograms of oriented gradients for human detection[ C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2005:886 - 893.
  • 2ELGAMMAL A, DURAISWAMI R, HARWOOD D, et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [ J]. Proceedings of the IEEE, 2002, 90(7) : 1151 - 1162.
  • 3ELGAMMAL A M, DAVIS L S. Probabilistic framework for segmenting people under occlusion[ C]//Proceedings of the IEEE International Conference on Computer Vision. Washington, DC: IEEEComputer Society, 2001:145 -152.
  • 4JOSEF S, LAWRENCE Z C, RICHARD S. Finding people in repeated shots ofthe same scene[ C]//Proceedings of the 16th British Machine Vision Conference. London: BMVC, 2006: 909 - 918.
  • 5FELZENSZWALB P, HUTTENLOCHER D. Pictorial structures for object recognition [ J]. International Journal of Computer Vision, 2005,61(1) :55 -79.
  • 6WANG L, HU W, TAN T. Recent developments in human motion analysis[ J]. Pattern Recognition Letters, 2003, 36(3) : 585 - 6013.
  • 7KHAN S, SHAH M. Tracking people in presence of occlusion[ C]// Asian Conference on Computer Vision. Taipei: [ s. n. ], 2000:263 - 266.
  • 8McKENNA S J, RAJA Y, GONG S. Tracking color objects using adaptive mixture models[ J]. Image Vision Computing, 1999, 17(3): 225 - 231.
  • 9MeKENNA S J, JABRI S, DURIC Z, et al. Tracking groups of people [J]. Computer Vision Image Understanding, 2000,80(1):42 -56.
  • 10TANG YINGGAN, ZHANG XIUMEI, LI XIAOLI, et al. Application of a new image segmentation method to detection of defects in castings[ J]. The International Journal of Advanced Manufacturing Technology, 2009, 43 (5/6) : 431 - 439.

二级参考文献16

  • 1荆仁杰 叶秀清.计算机图象处理[M].杭州:浙江大学出版社,1992..
  • 2孙仲康 沈振康.数字图像处理及其应用[M].北京:国防工业出版社,1985..
  • 3柳健.基于局部熵差的快速图象匹配方法.华中理工大学研究报告[M].,1995..
  • 4Gevorkian D,Egiazarian K,AstolaJ,Modified K-nearest neighbour filters for simple implementation[A],The 2000 IEEE International Symposium on Circuits and Systems[C],US:IEEE,2000,4.565 -568.
  • 5L J Siegel et al. Parallel processing approaches to image correlation[J]. Computers, IEEE Trans, 1982, c-31 (3) :208 - 218.
  • 6Z Fang, L M Ni. On the communication complexity of generalized 2-D cnvolution on array processors [ J]. Computers,IEEE Trans, 1989,38(2) : 184 - 193.
  • 7Pal N R, Pal S K.A review on image segmentation techniques[J] .Pattern Recogn, 1993,26(9) : 1277 - 1299.
  • 8Hojjatolealami S A, Kittler J. Region growing: A new approach Processing [J] .IEEE. Transactions, 1998,7(7) : 1079- 1064.
  • 9Michael C Wicks, William J Baldygo,Jr, Brown, Russell D. Expert system constant false alarm rate ( CFAR)processor [P]. United Slates.PN : 5499030, May 1996.
  • 10ZHANG Gong, ZHU Zhaoda. Application of fuzzy C-mean cluster algorithm on clutter tracking [J] .Chinese Journal of Aeronautics,2002,15(1):44-48.

共引文献62

同被引文献32

  • 1林强,石江宏.超声心动图的一种动态信息——全方向M型心动图[J].仪器仪表学报,2005,26(4):437-440. 被引量:22
  • 2Welland G V. Beyond wavelets[M].New York:Academic Press,Inc,2003.
  • 3Do M N,Vetterli M. The contourlet transform:an efficient directional multiresolution image representation[J].IEEE Transactions on Image Processing,2005,(12):2091-2106.doi:10.1109/TIP.2005.859376.
  • 4Po D D Y,Do M N. Directional multiscale modeling of images using the contourlet transform[J].IEEE Transactions on Image Processing,2006,(06):1610-1620.
  • 5Ma S F,Zheng G F,Jin L X. Directional multiscale edge detection using the contourlet transform[A].Los Alamitos.CA:IEEE Computer Society Press,2010.58-62.
  • 6Ma C Xa,Bi Y,Zhao Q S. Image edge detection using nonsubsampled contourlet transform[J].Advanced Matrials Research,2011.261-266.
  • 7Bamberger RH,Smith M J T. A filter bank for the directional decomposititon of images:theory and design[J].IEEE Transactions on Signal Processing,1992,(04):882-893.doi:10.1109/78.127960.
  • 8Barba J,Jeanty H,Fenster P. The use of local entropy measures in edge detection for cytological image analysis[J].Journal of Microscopy,1989,(01):125-134.
  • 9Mallat S G,Huang W L. Singularity detection and processing with wavelets[J].IEEE Transactions on Information theory,1992,(02):617-643.doi:10.1109/18.119727.
  • 10Pratt W K. Digital image processing[M].New York:wiley,2007.223-245.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部