期刊文献+

基于粗糙集的定性概率网整合方法

Integration method of qualitative probabilistic networks based on rough sets
下载PDF
导出
摘要 由于子定性概率网(QPN)仅局限于表示子领域知识,为构建一个较大QPN进行知识的全面表示,基于粗糙集理论,提出了一种具有不同节点的多个子QPN整合方法。在QPN中,可将单个变量或多个变量的组合看做粗糙集中的一个属性。当多个QPN整合时,首先合并多个子QPN结构;然后,在保证不出现环路的情况下,根据粗糙集的属性间的依赖度向合并的QPN中添加有向边及其定性符号;接着,再根据属性间相对必要性来删除具有多个父节点的属性所不必要的冗余边,从而整合出较大QPN。最后,实验验证了该整合方法的可行性和有效性。 Qualitative Probabilistic Network(QPN) is a powerful knowledge representation tool.However,sub-QPN can only represent sub-domain knowledge.To build a large QPN to represent the whole domain knowledge,an integration method of multiple sub-QPNs that have different nodes was proposed based on rough sets.Specifically,a single variable or a combination of multiple variables in a QPN could be regarded as an attribute in rough sets.First,multiple sub-QPNs were combined into an initial integrated QPN during integrating,then the directed edges and qualitative signs were added into the QPN according to attribute dependency degree,and then some unnecessary edges of which child node had multiple parent nodes could be deleted according to relative necessity of attribute.Thus,a large integrated QPN would be obtained to represent the whole domain knowledge.Finally,the experimental results illustrate that the integration method is feasible and effective.
出处 《计算机应用》 CSCD 北大核心 2011年第6期1638-1640,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60873100) 山西省自然科学基金资助项目(2009011017-4 2010011022-1)
关键词 定性概率网 定性影响 粗糙集 概率下近似 属性依赖度 属性相对必要性 Qualitative Probabilistic Network(QPN) qualitative influence rough set probabilistic lower approximation attribute dependency degree relative necessity of attribute
  • 相关文献

参考文献10

  • 1MATZKEVICH I, ABRAMSON B. The topological fusion of Bayes nets [ C]// Proceedings of the 8th Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kanfmann, 1992:191 - 198.
  • 2SAGRADO J, MORAL S. Qualitative combination of Bayesian networks [J]. International Journal of Intelligent Systems, 2003, 18 (2) : 237 - 249.
  • 3李维华,刘惟一,张忠玉,郭祥文,张燕峰.基于扩展关系模型的多Bayesian网依赖结构的合并[J].计算机科学,2004,31(7):192-195. 被引量:1
  • 4岳昆,高明海,韩格,刘惟一.时序环境中概率因果关系的定性表示及融合[J].云南大学学报(自然科学版),2009,31(5):455-462. 被引量:2
  • 5LU Y L, LIAO S Z. Integration of multiple qualitative probabilistic networks based on probabilistic rough sets [ C] //Proceedings of the 2010 International Conference on Computer Application and System Modeling. Chengdu: IEEE, 2010:454-458.
  • 6PAWLAK Z. Rough sets [ J]. International Journal of Computer and Information Sciences, 1982, 11 (5) : 341 - 356.
  • 7WELLMAN M P. Fundamental concepts of qualitative probabilistic networks [ J]. Artificial Intelligence, 1990, 44(3) : 257 - 303.
  • 8KWISTHOUTA J, TEL G. Complexity results for enhanced qualitative probabilistic networks [ J]. International Journal of Approximate Reasoning, 2008, 48(3):879-888.
  • 9YUE K, YAO Y, LI J. Qualitative probabilistic networks with reduced ambiguities [ J]. Applied Intelligence, 2010, 33(2): 159 - 178.
  • 10MURPHY K P. The Bayes net toolbox for Matlab[ J]. Computing Science and Statistics, 2001, 33(2): 1024 -1034.

二级参考文献25

  • 1PEARL J. Probabilistic reasoning in intelligent system:networks of plausible inference [ M ]. San Mateo CA: Morgan Kaufmann Publishers, INC. , 1988.
  • 2PEARL J. Propagation and structuring in belief networks [ J ]. Artificial Intelligence, 1986,29 (3) : 241-288.
  • 3HECKERMAN D, WELLMAN M P. Bayesian networks [ J ]. Communications of ACM, 1995,38 ( 3 ) : 27-30.
  • 4CHENG J. BN power constructor [ EB/OL]. [ 2008 - 07 - 11 ]. http ://www. cs. ualberta, ca/- jcheng/bnpc, htm.
  • 5Norsys Software Cory. Netica[ EB/OL]. [ 2008 -07 -11 ]. http ://www. norsys, com/netica, html.
  • 6WELLMAN M P. Fundamental concepts of qualitative probabilistic networks [ J ]. Artificial Intelligence, Elsevier Science Inc. , 1990,44 : 257 -303.
  • 7WELLMAN M P. Graphical inference in qualitative probabilistic networks[ J ]. Networks, 1990,20 (5) :687-701.
  • 8DRUZDZEL M J, HENRION M. Efficient reasoning in qualitative probabilistic networks [ C ]//Proc of the 11 th National Conf on Artificial Intelligence, AAAI Press, Menlo Park, CA, 1993,548-553.
  • 9LIU W Y, YUE K, LIU S X, et al. Qualitative - probabilistic - network - based modeling of temporal causalities and its application to feedback loop identification[ J]. Information Sciences,2008,178 (7) :1 803-1 824.
  • 10RENLLIJ S. Qualitative approaches to quantifying probabilistic networks [ D ]. Ph. D Thesis, Institute for Information and Computing Sciences, Utrecht University, the Netherlands,2001.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部