期刊文献+

社会化标签系统中个性化的用户建模方法 被引量:10

Method for personalized user profiling in social tagging systems
下载PDF
导出
摘要 针对社会化标签系统中现有用户兴趣模型建立的缺陷,即:使用一些零散标签的集合来表示用户兴趣,而忽略标签的联合使用现象。提出一种将共现技术引入自然法的用户建模方法,该方法以自然法为基础,向用户模型中添加适量的标签对,较好地体现了标签之间的联系,又同时考虑了体现用户兴趣的标签自身的权重。在PKDD2009数据集上测试实验结果表明,该模型较之已提出的自然法和共现法,取得了更高的准确率和召回率。 As for the disadvantages of available user interests modeling methods in social tagging systems: always use a set of scattered tags to represent users' interests but ignore the combination use of tags,a new user modeling method was proposed,which introduced co-occurrence techniques into the naive approach.The proposed method added some tag pairs on the basis of naive approach to user model,which reflects tags relationship and considers tags weight.The experimental results on dataset PKDD2009 show that the new model can achieve a higher precision and recall rate,which outperforms the nave method and co-occurrence method.
出处 《计算机应用》 CSCD 北大核心 2011年第6期1667-1670,共4页 journal of Computer Applications
关键词 社会化标签 个性化 用户兴趣模型 向量空间模型 标签共现 social tagging personalization users interest model Vector Space Model(VSM) tag co-occurrence
  • 相关文献

参考文献10

  • 1WALT V. Folksonomy definition and Wikipedia[ EB/OL]. [2010 - 06- 03]. http:// www. vanderwal, net/random/entrysel, php? blog = 1750.
  • 2FIRAN C S, NEJDLW, PAIU R. The benefit of using tag-based profiles[ C]// LA-WEB'07: Proceedings of the 2007 Latin American Web Conference. Washington, DC: IEEE Computer Society, 2007: 32 -41.
  • 3MICHLMAYR E, CAYZER S. Learning user profiles from tagging data and leveraging them for personalized information access [ EB/OL]. [ 2010 - 05 - 01 ]. http://citeseerx, ist. psu. edu/viewdoc! download?doi = 10.1.1.72. 8101 &rep = repl &type = pdf.
  • 4RAMANATHAN K, GIRAUDI J, GUPTA A. Creating hierarchical user profiles using wikipedia [ EB/OL ]. [ 2010 -06 -22]. http: //www. hpl. hp. com/techreports/2008/HPL-2008-127, pdf.
  • 5GODOY D, AMANDI A. Hybrid content and tag-based profiles for recommendation in collaborative tagging systems[ C] // Proceedings of Latin AmericanWeb Conference. Washington, DC: IEEE Computer Society, 2008:58 -65.
  • 6SHEPITSEN A, GEMMELL J, MOBASHER B, et al. Personalized recommendation in social tagging systems using hierarchical clustering[ C] //Proceedings of the 2008 ACM Conference on Recommender Systems. New York: ACM, 2008:259 -266.
  • 7HOTHO A, JASCHKE R, SCHMITZ C, et al. Information retrieval in folksonomies: Search and ranking [ C]// The Semantic Web: Research and Applications, LNCS 4011. Berlin: Springer, 2006:411 - 426.
  • 8Bibsonomy dataset[ EB/OL]. [ 2010 - 04 - 01 ]. http://www, kde. cs. uni-kassel, de/ws/de09/dataset.
  • 9AU YEUNG C M, GIBBINS N, SHADBOLT N. A study of user profile generation from folksonomies[ EB/OL]. [ 2010 - 04 - 03 ]. http://eprints, ecs. soton, ac. uk/15222/1/swkm2008_paper, pdf.
  • 10田莹颖.基于社会化标签系统的个性化信息推荐探讨[J].图书情报工作,2010,54(1):50-53. 被引量:40

二级参考文献9

共引文献39

同被引文献90

  • 1文丽,马建国,姚远程.基于播存网格的智能Agent研究与设计[J].计算机工程与应用,2004,40(25):124-125. 被引量:3
  • 2吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:104
  • 3邢玲,马建国,李幼平,刘志文.一种基于UCL的中文网页信息过滤方法[J].电子学报,2006,34(10):1752-1757. 被引量:9
  • 4花舒宇,吴静,王娟娟.互补结构网络智能代理机制研究[J].现代图书情报技术,2007(7):68-71. 被引量:1
  • 5蔡寅翔,张杰,赵永利.多层多域光网络管理系统关键技术研究[J].新型工业化,2012,2(9):1-11.
  • 6Pavan Kumar Vatturi, Wemer Geyer, et al. Casey Dugan.Tag-based filtering for personalized bookmark recommendations. [J] CIKM '08 Proceediags of the 17th ACM conference on Information and knowledge management (978-1-59593 -991-3)2008:1395-1396.
  • 7LI Xin,GUO Lei, Yihong Eric Zhao, et al. Tag-based social interest discovery. [J]WWW '08 Proceedings of the 17th international conference on World Wide Web(978-1-60558-085-2).2008,336:675-684.
  • 8Francesca Carmagnola, Federica Cena, Omar Cortassa. Towards a Tag- Based User Model: How Can User Model Benefit from Tags?[J] Lecture Notes in Computer Science(978-3-540-73077-4) 2007, 4511:445-449.
  • 9RICCI F,ROKACH I,SHAPIRA B,et al.Recommender systems handbook [M].Berlin:Springer,2011:145-186.
  • 10SYMEONIDIS P,TIAKAS E,MANOLOPOULOS Y.Product recommendation and rating prediction based on multi-modal social networks [C]// Proceedings of the 5th ACM Conference on Recommender Systems.New York:ACM Press,2011:61-68.

引证文献10

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部