期刊文献+

一类自催化反应系统的Hopf分歧与稳定性 被引量:1

Hopf Bifurcation and Stability for an Autocatalytic System
下载PDF
导出
摘要 本文考虑一类带饱和项的自催化反应系统.我们首先讨论了常微分系统Hopf分歧的存在性,得到了渐近稳定的周期解.其次讨论了具有扩散项的偏微分系统,在扩散系数满足一定的条件下,得到了次临界的Hopf分歧的存在性,并且利用中心流形约化方法,判断出由该Hopf分歧产生的空间齐次的周期解是渐近稳定的.最后,借助Matlab软件形象地验证和刻画了文中的结论. This paper concerns a chemical model with an autocatalysis and saturation law.First,the subcritical Hopf bifurcation is obtained for the ordinary differential system and the induced periodic solutions are locally asymptotically stable.Then the diffusive model is considered.When the diffusive coefficients satisfy certain conditions,the subcritical Hopf bifurcation is also obtained and the spatially homogeneous periodic solutions are asymptotically stable.At last,numerical examples simulated with Matlab are shown to support and strengthen the analytical conclusions.
作者 马晓丽
出处 《工程数学学报》 CSCD 北大核心 2011年第3期343-353,共11页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10971124)~~
关键词 自催化 HOPF分歧 稳定性 扩散项 autocatalysis Hopf bifurcation stability diffusive terms
  • 相关文献

参考文献10

  • 1Ibanez J L,Velarde M G.Multiple steady states in a simple reaction-diffusion model with Michaelis-Menten (first-order Hinshelwood-Langmuir) saturation law:the limit of large separation in the two diffusion constants[J].Journal of Mathematical Physics,1978,19:151-156.
  • 2Bonilla L L,Velarde M G.Singular perturbations approach to the limit cycle and global patterns in a nonlinear diffusion-reaction problem with autocatalysis and saturation law[J].Journal of Mathematical Physics,1979,20:2692-2703.
  • 3Ruan W H.Asymptotic behavior and positive steady-state solutions of a reaction-diffusion model with autocatalysis and saturation law[J].Nonlinear Analysis Theory,Method and Application,1993,21:439-456.
  • 4Du Y H.Uniqueness multiplicity and stability for positive solutions of a pair of reaction-diffusion equations[J].Proceedings of the Royal Society of Edinburgh A,1996,126:777-809.
  • 5Peng R,Shi J P,Wang M X.On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law[J].Nonlinearity,2008,21:1471-1488.
  • 6Yi F Q,Wei J J,Shi J P.Bifurcation and spatio-temporal patterns in a diffusive homogenous predator-prey system[J].Journal of Differential Equations,2009,246(5):1944-1977.
  • 7Su Y,Wei J J,Shi J P.Hopf bifurcations in a reaction-diffusion population model with delay effect[J].Journal of Differential Equations,2009,247(5):1156-1184.
  • 8Wei J J,Li M Y.Hopf bifurcation analysis in a delayed Nicholson blowflies equation[J].Nonlinear Analysis,2005,60:1351-1367.
  • 9Hassard B D,Kazarinoff N D,Wan Y H.Theory and Application of Hopf Bifurcation[M].Cambridge:Cambridge University Press,1981.
  • 10Wiggins S.Introduction to Applied Nonlinear Dynamical Systems and Chaos[M].New York:Springer-Verlag,1991.

同被引文献9

  • 1Zhang N, Chen F D, Su Q Q, et al. Dynamic behaviors of a harvesting Leslie-Gower predator-prey model[J]. Discrete Dynamics in Nature and Society, 2011, 15(1): 309-323.
  • 2Zhou J, Shi J P. The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie- Gower predator-prey model with Holling-type II functional responses[J]. Journal of Mathematical Analysis and Applications, 2013, 405(2): 618-630.
  • 3Zhu C R, Lan K Q. Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates[J]. Discrete and Continuous Dynamical Systems-Series B, 2010, 14(1): 289- 3O6.
  • 4Gupta R P, Banerjee M, Chandra P. Bifurcation analysis and control of Leslie-Gower predator-prey model with Michaelis-Menten type prey-harvesting[J]. Differential Equations and Dynamical Systems, 2012, 20(3): 339-366.
  • 5Casten R G, Holland C J. Stability properties of solutions to systems of reaction-diffusion equations[J]. SIAM Journal on Applied Mathematics, 1977, 33(2): 353-364.
  • 6Lou Y, Ni W M. Diffusion, self-diffusion and cross-diffusion[J]. Journal of Differential Equations, 1996, 131(1): 79-131.
  • 7Lin C S, Ni W M, Takagi I. Large amplitude stationary solutions to a chemotaxis system[J]. Journal of Differential Equations, 1988, 72(1): 1-27.
  • 8Smoller J. Shock Waves and Reaction-Diffusion Equations[M]. Berlin: Springer-Verlag, 1983.
  • 9Hassard B D, Kazarinoff N D, Wan Y H. Theory and Applications of Hopf Bifurcation[M]. Cambridge: Cambridge University Press, 1981.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部