期刊文献+

具任意次非线性项的非线性Klein-Gordon方程孤波解的轨道稳定性

The Orbital Stability of Solitary Solutions to the Nonlinear Klein-Gordon Equation with Nonlinear Terms of any Degree
下载PDF
导出
摘要 具任意次非线性项的非线性Klein-Gordon方程是一类非常重要的物理模型,它的孤波解的轨道稳定性有着很好的物理意义.本文利用抽象的Grillakis轨道稳定性理论和谱分析,讨论具任意次非线性项的非线性Klein-Gordon方程的孤波解的轨道稳定性.当非线性项的系数以及波速满足一定的条件时,得出了其钟状孤波解总是不稳定的,而扭状孤波解总是稳定的.从而揭示了非线性项的系数以及波速对孤波解的稳定性所起的作用. The nonlinear Klein-Gordon equation with nonlinear terms of any degree is a very important model in physics,the orbital stability of its solitary wave solutions has a very good physical implication.In this paper,the authors discuss the orbital stability of solitary wave solutions to the nonlinear Klein-Gordon equation with nonlinear terms of any degree,by applying the abstract results of Grillakis orbital theory and detailed spectral analysis.When the coefficients of nonlinear terms and the wave velocity satisfy some conditions,we obtain that its bell solitary wave solutions are unstable and the kink solitary wave solution is stable.So we show that the orbital stability of solitary wave solutions depends on the the coefficients of nonlinear terms and the wave velocity to some extent.
出处 《工程数学学报》 CSCD 北大核心 2011年第3期375-379,共5页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11071164) 上海市自然科学基金(10ZR1420800) 上海市重点学科建设项目(S30501)~~
关键词 非线性KLEIN-GORDON方程 轨道稳定性 孤波解 非线性项 nonlinear Klein-Gordon equation orbital stability solitary wave solution nonlinear terms
  • 相关文献

参考文献7

  • 1Sakurai J J.Advanced Quantum Mechanics[M].New York:Addison Wesley,1967.
  • 2Lee I J.Numerical solution for nonlinear Klein-Gordon equation by collocation method with respect to spectral method[J].Journal of Korean Mathematical Society,1995,32(3):541-551.
  • 3蒋毅,孟宪良,蒲志林.三维空间中Klein-Gordon-Zakharov方程的Jacobi椭圆函数周期解[J].工程数学学报,2008,25(4):719-723. 被引量:2
  • 4Fan D,Zhong S.Global solutions for nonlinear Klein-Gordon equations in infinite homogeneous wave guides[J].Journal of Diffiential Equation,2006,231:212-234.
  • 5Ginibre J,Velo G.The global Cauchy problem for the nonlinear Klein-Gordon equation[J].Mathematical I,1985,189:487-505.
  • 6张卫国,常谦顺,李用声.具任意次非线性项的Liénard方程的精确解及其应用[J].数学物理学报(A辑),2005,25(1):119-129. 被引量:11
  • 7Grillakis M,Jalah Shatah.Walter strauss,stability theory of solitary waves in the presence of symmetry I[J].Journal of Functional Analysis,1987,74:160-197.

二级参考文献25

  • 1韩茂安.一类广义Liénard方程的有界性[J].科学通报,1995,40(21):1925-1928. 被引量:15
  • 2黄立宏,庾建设.广义Liénard方程非平凡周期解的存在性[J].应用数学,1995,8(2):172-176. 被引量:10
  • 3KamkeE著 张鸿林译.常微分方程手册[M].北京:科学出版社,1980..
  • 4Villari G. On the qualitative behaviour of solutions of Liénard equation. J Diff Equ, 1987, 67(2): 269-277.
  • 5Dumortier F, Rousseau C. Cubic Liénard equations with linear damping. Nonlinearity, 1990,3: 1015-1039.
  • 6Benjamin T B, Bona J L, Mahong J J. Model equations for long waves in nonlinear dispersive systems. Philos Trans R Soc(Ser A), 1972, 272: 47-78.
  • 7Medeiros L A, Perla G M. Existance and uniqueness for periodic solutions of the Benjamin-Bona-Mahony equation. SIAM J Math Anal, 1977, 8(5): 792-799.
  • 8Ablowitz M J. Lectures on the inverse scattering transform. Studies in Applied Mathematics,1978,58(11):17-94.
  • 9Whitham G B. Linear and Nonlinear Waves. New York: John Wiley, 1974.
  • 10Bogolubsky I L. Some examples of inelastic soliton interaction. Computer Physics Communications, 1977, 13(2): 149-155.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部