摘要
在一致光滑的一致凸的Banach空间中,设计了一种收缩投影算法用以逼近变分不等式的解,并在紧算子减弱为连续算子的条件下,利用广义投影算子和K-K性质等技巧证明了该算法的强收敛性.所得结果是近期相关结果的改进与推广,其算法有重要应用.
In uniformly smooth and uniformly convex Banach spaces,a shrinking projection algorithm is proposed for finding an element of the solution set of variational inequalities,and a strong convergence theorem is proved by using the generalized projection operator,K-K property and other analysis techniques under the conditions of compact mappings weakening continuous mappings.The results of this paper improve and extend recent some relevant results.The proposed algorithm has important applications.
出处
《工程数学学报》
CSCD
北大核心
2011年第3期406-410,共5页
Chinese Journal of Engineering Mathematics
基金
The National Natural Science Foundation of China(10771050)
the Scientific Research Program of Shaanxi Provincial Education Department(11JK0486)
关键词
收缩投影算法
变分不等式
K-K性质
shrinking projection method
variational inequalities
K-K property