期刊文献+

响应面法优化嗜热厌氧代谢工程菌发酵产乙醇的培养基 被引量:1

Optimization of culture mediumfor ethanol production of Thermoanaerobacterium aotearoense engineering strain by response surface methodology
下载PDF
导出
摘要 利用响应面法优化嗜热厌氧代谢工程菌产乙醇的培养基,在单因素实验基础上,采用Plackett-Burman设计对影响嗜热厌氧代谢工程菌发酵产乙醇的重要培养基组分进行了筛选,确定主要影响因子为葡萄糖、木糖和酵母提取物。再用最陡爬坡实验逼近最大响应区域。最后用中心组合设计和响应面分析法,确定了主要影响因子的浓度。优化后的培养基组成为葡萄糖13.07g/L,木糖9.58g/L,酵母提取物3.78g/L,其他组分浓度同MTC培养基,不添加一水半胱氨酸盐酸盐和二盐酸吡哆氨。在此培养基条件下,乙醇产量和乙醇得率分别为(6.102±0.21)g/L和(0.38±0.012)g/g,是优化前产量的1.46倍。 The fermentation medium for ethanol production of an anaerobic thermophilic aotearoense engineenng strain was optimized by response surface methodology. Based on single factor tests, Plackett-Burman design was applied to screen key components in medium for ethanol production. Then, the steepest ascent method was adopted to determine the maximum points. Finally, the concentrations of key components were confirmed by central composite design and response surface methodology. It is showed that glucose, xylose and yeast extract were key components. The optimized medium consisted of 13.07g/L glucose, 9. 58g/L xylose, 3.78g/L yeast extract, and other components without cysteine monohydrate and ammonia pyridoxine hydrochloride at the same concentrations as MTC mediurrr In optimized medium, the ethanol productivity and ethanol yield were (6. 102 ± 0. 21 )g/L and (0. 38 ± 0. 012)g/g respectively. The productivity was 1.46 times of that in original mediurm .
出处 《中国酿造》 CAS 北大核心 2011年第5期59-62,共4页 China Brewing
基金 国家自然科学基金(B5080380 51078147) 国家科技支撑项目(2008BAI63B07) 广东省科技计划项目(2010B031700022)
关键词 嗜热厌氧杆菌 发酵 乙醇 响应面 aotearoense fermentation ethanol response surface methodology
  • 相关文献

参考文献18

  • 1CHUM HL, OVEREND RP. Biomass and renewable fuel[J]. Fuel Bioproe Technol, 2001,71 : 187-195.
  • 2HABER W. Energy, food, and land- The ecological traps of humankind [J]. Environ Sci Pollut R, 2006, 14:359-365.
  • 3DEMIRBAS A. Progress and recent trends in biofuels [J]. Prog Energ Combust Sci, 2007, 33:1-18.
  • 4HAHN-HAGERDAL B, GALBE M, GORWA-GRAUSLUND MF, et al. Bio-ethanol-the fuel of tomorrow from the residues of today [ J ]. Trends Biotechnol, 2006, 24(12): 549-556.
  • 5SKINNER KA, LEATHERS TD. Bacterial contaminants of fuel ethanol production [ J ]. J Ind Mocrobiol Biotech, 2004, 31 (9) : 401-408.
  • 6NORDHOFF S. Editorial: food vs fuel - the role of biotechnology[ J ]. Bioteehnol J, 2007, 2(12) : 1451.
  • 7TENENBAUM DJ. Food vs. fuel: diversion of crops could cause more hunger[J]. Environ health perspect, 2008, 116(2) : A254-A257.
  • 8ZALDIVAR J, NIELSEN J, OLSSON L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integation[J]. Appl Mierobiol Blot, 2001,56(1-2) : 17-34.
  • 9SOMMER P, GEORGIEVA T, AHRING BK. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicelluloses [J]. Biochem Soc T, 2004, 32: 283-289.
  • 10HARTLEY BS, SHARMA G. Novel ethanol fermentations from sugar cane and straw[J]. Philos T Roy Soc A, 1987, 321 : 555-568.

二级参考文献12

  • 1蔡友华,范文霞,刘学铭,陈卫东,徐玉娟,陈智毅.响应面法优化巴西虫草发酵培养基的研究[J].食用菌学报,2007,14(2):55-63. 被引量:13
  • 2HORROCKS L A, YEO Y K. Health benefits of docohexaenoic acid (DHA) [J]. Pharmacol Res, 1999, 40(3): 211-225.
  • 3SIJTSMA L, SWAAF M E. Bioteclmological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid[J]. Appi Microb Blot, 2004, 64(2): 146-153.
  • 4RATLEDGE C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production [J]. Biochimie, 2004, 86(11): 807-815.
  • 5MENDES A, GUERRA P, MADEIRA V, et al. Study of docosahexaenoic acid production by the heterotrophic micro alga Crypthecodinium cohnii CCMP 316 using carob pulp as a promising carbon source [J]. World J Mierob Blot, 2007, 23(9): 1209-1215.
  • 6SILVA TL, REIS A. The use of multi-parameter flow cytometry to study the impact of n -dodecane additions to marine dinoflagellate microalga Clypthecodinium cohnii batch fermentations and DHA production [J]. J had Microbiol Blot, 2008, 35(8): 875-887.
  • 7RATLEDGE C, KANAGACHANDRAN K, ANDERSON AJ, et al. Production of docosahexaenoic acid by Crypthecodiniurn cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source[J]. Lipids, 2001, 36(11):1241-1246.
  • 8BLIGH EG, DYER WJ. A rapid method oftotle lipid extraction and puffcation[J]. Can J Phsiol Phram, 1959, 37(8): 911-917.
  • 9ZHU L Y, ZONG M H, WU H. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation [J]. Bioresource Technol, 2008, 99(16): 7881-7885.
  • 10王菊芳,梁世中,陈峰.碳源对隐甲藻(Crypthecodinium cohnii)生长及DHA产量的影响[J].中国油脂,2000,25(6):209-211. 被引量:6

共引文献20

同被引文献30

  • 1高娃,于德水,刘佳宁,戴肖东,韩增华.桦褐孔菌子实体多糖提取研究[J].生物技术,2012,22(2):70-73. 被引量:7
  • 2项哨,朱圣禾,朱永平,董凤芹.灰树花多糖在小鼠体内抗病毒作用的研究[J].浙江医科大学学报,1995,24(5):203-205. 被引量:27
  • 3尹艳,高文宏,于淑娟.多糖提取技术的研究进展[J].食品工业科技,2007,28(2):248-250. 被引量:121
  • 4JEFFWU C F,MICHAEL H.实验设计与分析及参数优化[M].北京:中国统计出版社,2003:341—378.
  • 5徐向宏,何明珠.实验设计与Design-Expert、SPSS应用[M].北京:科学出版社,2010:132-150.
  • 6Ohno N, Adachi Y, Suzuki I, et al.Characterization of the antitumor glucan obtained from liquid- cultured Grifola frondosa [J].Chem Pharm Bull(Tokyo) ,1986,34(4) :1709-1715.
  • 7Wu MJ, Cheng TL, Cheng SY, et al.Immunomodulatory properties of Grifola frondosa in submerged culture [ J ] .J Agr Food Chem,2006,54(8) :2906-2914.
  • 8Mayell M.Maitake extracts and their therapeutic potential-a review [ J ].Altern Med Rev,2001,6 ( 1 ) :48-60.
  • 9Yuki M, Akihisa M, Toshihiko T, et al.Characterization and antitumor effect of a novel polysaccharide from Grifola frondosa [ J ] .J Agr Food Chem ,2009,57 (21) : 10143-10149.
  • 10Fang JP, Wang Y, Lv XF, et al.Structure of a β- glucan from Grifola frondosa and its antitumor effect by activating Dectin-1/ Syk/NF- κB signaling[ J ] .Glycoconjugate 1,2012,29:365-377.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部