期刊文献+

一种提高多目标进化算法搜索鲁棒最优解效率的方法 被引量:2

A method for improving performance of multi-objective evolutionary algorithms in searching robust optimal solutions
下载PDF
导出
摘要 提出将拉丁超立方体抽样用于计算有效目标函数,有效地提高多目标进化算法求解鲁棒最优解的效果;同时提出一种自适应抽样技术,使求解效果和效率都得到了较大的提高。通过与已有方法的对比实验,研究结果表明:本文所提出的方法求解效果好,效率较高。 The performance of robust optimal solutions by using Latin hypercube sampling(LHS) to compute effective objective functions was improved.Furthermore,an adaptive sampling technique was proposed,which can improve the performance and efficiency of multi-objective evolutionary algorithms(MOEAS) at a great level.Through some comparative experiments,the results demonstrate that the methods suggested in this paper are better than the existing approaches both in the performance of robust optimal solutions and the efficiency of MOEAs.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第4期990-999,共10页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(60773047) 湖南省自然科学基金资助项目(09JJ6089)
关键词 多目标进化算法 鲁棒最优解 有效目标函数 效率 自适应抽样 MOEAs robust optimal solutions effective objective function efficiency adaptive sampling
  • 相关文献

参考文献20

  • 1Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transaction on Evolutionary Computation, 2002, 6(2): 181-197.
  • 2Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm[R]. Zurich, Switzerland: Technical Report 103, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, 2001:1-21.
  • 3Jensen M T. Generating robust and flexible job shop schedules using genetic algorithms[J]. IEEE Transaction on Evolutionary Computation, 2003, 7(3): 275-288.
  • 4Thompson A. Evolutionary techniques for fault tolerance[C]// Proceedings of the UKACC International Conference on Control. Exeter: IEEE Press, 1996: 693-698.
  • 5Anthony D K, Keane A J. Robust-optimal design of a lightweight space structure using a genetic algorithm[J]. AIAA Journal, 2003, 41(8): 1601-1604.
  • 6Jin Y, Branke J. Evolutionary optimization in uncertain environments-A survey[J]. IEEE Transactions on Evolutionary Computation, 2005, 9(3): 303-317.
  • 7Yang S, Ong Y S, Jin Y. Evolutionary computation in dynamic and uncertain environments[M]. Berlin: Springer, 2007: 345-598.
  • 8Branke J, Schmidh C. Faster convergence by means of fitness estimation[J]. Soft Computing, 2005, 9(1): 13-20.
  • 9Tsutsui S, Ghosh A. Genetic algorithm with a robust solution searching scheme[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(3): 201-219.
  • 10Jin Y, Sendhoff B. Trade-off between performance and robustness: An evolutionary multiobjective approach[C]// Evolutionary Multi Criterion Optimization. Berlin: Springer, 2003: 237-251.

二级参考文献2

共引文献160

同被引文献38

  • 1郑金华,蒋浩,邝达,史忠植.用擂台赛法则构造多目标Pareto最优解集的方法[J].软件学报,2007,18(6):1287-1297. 被引量:54
  • 2JIN Yao-chun,BRANKE J. Evolutionary optimization in uncertain environments:a survey[J].IEEE Transactions on Evolutionary Computation,2005,(03):303-317.
  • 3BRANKE J. Creating robust solutions by means of evolutionary algorithms[A].Berlin:Springer-Verlag,1998.119-128.
  • 4BRANKE J. Efficient evolutionary algorithms for searching robust solutions[A].London:Springer,2000.275-285.
  • 5TSUTSUI S,GHOSH A,FUJIMOTO Y. A robust solution searching scheme in genetic search[A].Berlin:Springer-Verlag,1996.543-552.
  • 6TSUTSUI S,GHOSH A. Genetic algorithm with a robust solution searching scheme[J].IEEE Transactions on Evolutionary Computation,1997,(03):201-219.
  • 7PARMEE I C,BONHAM C R. The maintenance of search diversity for effective design space decomposition using cluster oriented genetic algorithms (COGAs) and multi-agent strategies (GAANT)[A].1996.
  • 8JIN Yao-chun,SENDHOFF B. Trade-off between performance and robustness:an evolutionary multi-objective approach[A].Berlin:Springer-Verlag,2003.237-251.
  • 9LIM D,ONG Y S,LEE B S. Inverse multi-objective robust evolutionary design optimization in the presence of uncertainty[A].New York:ACM Press,2005.55-62.
  • 10DEB K,GUPTA H. Searching for robust Pareto-optimal solutions in multi-objective optimization[A].2005.150-164.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部