期刊文献+

多Agent系统构造环境ABE的研究 被引量:1

Research on Multi-Agent System Building Environment ABE
下载PDF
导出
摘要 1 引言 Agent技术是当今人工智能、计算机软件等领域的研究热点之一,有关agent的各项研究在国外已得到迅猛发展。多agent系统已成为分布式人工智能研究的一个十分活跃的领域。美国、日本等发达国家对多agent开发环境已进行了多年的研究,从软件工程到分布式系统,从多媒体技术到Internet,……,agent理论与技术均受到广泛的关注和研究,并取得了一些成果。为了方便某些特定类型的面向agent应用的开发工作,一些相应的agent开发环境已经研制成功。IBM公司开发的ABE系统(AgentBuilding Environment)就是其中之一。该系统目前可以从Internet下载,同时已有一些由该系统开发的应用程序可供下载,其影响颇大。 This paper introduces the architecture and the design point of ABE system provided by IBM, which is a well known agent building environment system. It describes the adapter, engine and library, which are the' three important components of ABE. And analyzes its shortage in multi-agent system design with our extension in the communication and engine.
出处 《计算机科学》 CSCD 北大核心 1999年第8期58-61,共4页 Computer Science
基金 国家自然科学基金 教育部博士点基金
关键词 ABE系统 AGENT系统 人工智能 Distributed artificial intelligence, Agent oriented technology, Agent building environ-
  • 相关文献

参考文献1

  • 1张东摩 陈世福.AODE中心智能状态的表示与处理[J].软件学报,1997,:357-364.

同被引文献22

  • 1[1]WeiB G, Sen S. Adaptation and Learning in Multiagent Systems.Springer Verlag, Berhin, 1996
  • 2[2]Asada M,Uchibe E, Noda S, et al. Coordination of multiple behaviors acquired by vision-based reinforcement learning. In: Proc. of IEEE/RSJ/GI Intl. Conf. on Intelligent Robots and Systems (IRO5'94), 1994. 917~924
  • 3[3]Uchibe E, Asada M, Hosoda K. Behavior coordination for a mobile robot using modular reinforcement learning. In: Proc. of IEEE/RSJ/GI Intl Conf. on Intelligent Robots and Systems (IROS'96), 1996. 1329~1336
  • 4[4]Littman M L. Markov games as a framework for multi-agent reinforcement learning In: Proc. of the Eleventh Intl. Conf. on Machine learning, San Mateo, CA, 1994. 157~163
  • 5[5]http://www.cs. ubc. ca/nest/1ci/soccer
  • 6[6]Stone P, Veloso M. Beating a defender in robotic soccer: Memory-based learning of a continuous function. In: Touretzky D S, Mozer M C, Hasselmo M E, eds. Advances in Neural Informanon Processing Systems 8,The MIT Press, Cambridge, MA, 1996.896~902
  • 7[7]Stone P, Valoso M. Towards collaborative and adversarial learning: A case study in robotic soccer. International Journal of Human-Computer Systems (IJHCS), 1997
  • 8[8]Stone P, Veloso M. A layered approach to learning client behaviora in the RoboCup soccer server. Applied Artificial Intelligence, 1998, 12:165~188
  • 9[9]Matsubara H, Noda I, Hirski K. Learning of coorperatlve actions in multi-agent systems: A case study of pass play in soccer. In Adaptation,Coevolution and Learning in Multiagent Systems. Paper from the 1996 AAAI Spring Symposium. AAAI Press, Menlo Park, CA, 1996. 63~67
  • 10[10]Balch T. Learning roles: Behavioral diversity in robot teams: [Technical Report GIT-CC-97-12]. College of Computing, Georgia Institute of Technology, Atlanta, Georgia, March 1997

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部