期刊文献+

无轴承绕线型异步电机瞬态响应的有限元分析及实验研究

Transient FEM Computation and Experimental Study for Bearingless Wound-rotor Induction Motors
下载PDF
导出
摘要 无轴承电机集磁性悬浮与转矩驱动于一体,具有无摩擦、无磨损、无损耗、免维修、寿命长等独特优点,从根本上改变了传统的支承与传动形式。该文介绍一种无轴承绕线型异步电机,通过瞬态有限元分析法(TFEM)计算其径向力和转矩的瞬态响应,结果表明该无轴承电机可以同时产生支承转子重量的稳定径向力与恒定转矩,且其控制电流相互独立,与鼠笼型转子无轴承异步电机相比,前者能够产生更有效的径向力,且转矩不受径向力绕组电流干扰;并在基于SVM-DTC的磁悬浮异步电机悬浮子系统独立控制实验平台上加以测试,结果表明该系统能够实现了无轴承绕线型异步电动稳定悬浮。 Presented a bearingless wound-rotor induction motor in this paper.The transient responses of radial force and torque in bearingless induction motors were computed with the transient fnite element method(FEM) with rotating machine models.It is shown that a steady radial force to support the shaft weight and a constant torque independent of the bearing currents can be generated at the same time.The bearingiess wound-rotor induction motor was compared to the bearingless squirrel cage induction motor with respect to the transient responses of radial force and torque.A control system was proposed to implement the combination of levitation and rotation.
出处 《微电机》 北大核心 2011年第5期27-30,40,共5页 Micromotors
关键词 无轴承电机 有限元分析法 悬浮控制 径向力 bearingless motor finite element method levitation control radial force
  • 相关文献

参考文献6

  • 1A. Chiba. M. A. Rahman, T. Fukao. Radial Force in a Lieariag-less Reluctance Motor[ J]. IEEE Transactions on Magnetics, 1991, 27(2) : 786 -790.
  • 2R. Schob, J. Bichsel. Vector Control of the Bearingless Motor[ C]. Fourth International Symposium on Magnetic Bearings. ETH Zurich. 1994 : 327 - 332.
  • 3Y. Okada, S. Miyamoto, T. Ohishi. Levitation and Torque Control of Internal Permanent Magnet Type Bearingless Motor [ J ]. IEEE Transactions on Control Systems Technology, 1996:565 -571.
  • 4邓智泉,何礼高,严仰光.无轴承交流电机的原理及应用[J].机械科学与技术,2002,21(5):730-733. 被引量:11
  • 5Tengchao Zhang, Huangqiu Zhu, Yuxin Sun. Rotor Suspension Principle and Decoupling Control for Self-bearing Induction Motors [ C]. In: IPEMC 2006.
  • 6徐艳平,钟彦儒.基于空间矢量PWM的新型直接转矩控制系统仿真[J].系统仿真学报,2007,19(2):344-347. 被引量:40

二级参考文献23

  • 1[1]Hermann P K. A radial active magnetic bearing[Z]. London Patent No.1 478 868, 20 Nov.1973
  • 2[2]Hermann P K. A radial active magnetic bearing having arotating drive[Z]. London Patent No.1 500 809,9 Feb.1974
  • 3[3]Higuchi T. Magnetically floating actuator having angular positioning function[Z]. United Stated Patent. No 4 683 391, 12 March 1985
  • 4[4]Wehberg J. Elektrischer antrieb und integrierte lagerung am beispiei eines hochtourigen rotors[M]. Dissertation TU Braunschweig, 1990
  • 5[5]Bosch R. Development of a bearingless motor[A]. In:Proc. Int. Conf. Electric. Machines (ICEM'88)[C], 1988, 3:373~375
  • 6[6]Bichsel J. The bearingless electrical machine[A].In :Proc. Int. Symp. Magn. Suspension. Technol. NASA Langley Res. Center, Hampton[C]. 1991, 561~573
  • 7[7]Schob R, Bichsel J. Vector control of the bearingless mo-tor[A]. In: Proc.4th Int. Symp. Magnetic Bearings, Zürich, Switzerland. 1994:327~332
  • 8[8]Chiba A, Deido T, Fukao T, Rahman M A. An analysis of bearingless AC motors[J].IEEE Trans. Energy Conversion,1994, 9(1):61~68
  • 9[9]Okada Y, Dejima K,Ohishi T. Analysis and comparison of PM synchronous motor and induction motor type magnetic bearings[J]. IEEE Trans. Industry Application,1995, 31(5):1047~1053
  • 10[10]Chiba A, Furuichi R, Aikawa Y, Shimada K, Takamoto Y,Fukao T.Stable operation of induction-type bearingless motors under loaded conditions[J].IEEE Trans. Industry Application,1997, 33(4):919~924

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部