期刊文献+

有监督的水平集高分辨SAR图像分割方法 被引量:2

Supervised High-Resolution SAR Image Segmentation Algorithm Based on Level Set
下载PDF
导出
摘要 针对基于统计模型的水平集SAR图像分割中参数估计耗时较多的问题,提出了一种有监督的高分辨SAR图像分割方法。该方法将Fisher分布和Gamma分布分别作为高分辨SAR图像的目标和背景统计模型,结合水平集方法推导了SAR图像分割水平集函数的能量泛函模型,通过最小化能量泛函得到曲线演化偏微分方程,实现对高分辨SAR图像的分割。试验结果表明,该方法对高分辨SAR图像具有强散射点的目标分割更完整,并且比无监督统计模型分割方法分割速度更快。 A new supervised level set segmentation method based on statistics model for high-resolution synthetic aperture radar(SAR) images is proposed.The target and background scattering statistics characteristic of the high-resolution SAR images is modeled by Fisher and Gamma probability density function separately,and an energy functional with respect to level set adapted for SAR image is defined.Partial differential equations(PDE) of curve evolution are obtained by minimizing the energy functional.Meanwhile,the parameters of the Fisher and Gamma distribution are estimated by training data selected in advance.The segmentation of the SAR images is implemented by the solution of the PDE.The performance of the method is verified by real SAR images.Results show that the method can get faster segmentation speed and more rounded target segmentation for targets with strong reflectors of high-resolution SAR images if only the training data are selected suitably.
作者 吕雁 冯大政
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2011年第3期357-362,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60872137)
关键词 Fisher分布 水平集 SAR图像分割 有监督 Fisher distribution level set SAR image segmentation supervised
  • 相关文献

参考文献12

  • 1OSHER S, FEDKIW R. Level set method and dynamic implicit surfaces[M]. New York: Springer, 2003.
  • 2SILVEIRA M, HELENO S. Separation between water and land in SAR images using region-based level sets[J]. IEEE Tran on Geoscience and Remote Sensing Letters, 2009, 6(3): 471-475.
  • 3SAGIV C, SOCHEN N, ZEEVI Y. Integrated active contive contours for texture segmentation[J]. IEEE Trans on Image Processing, 2006, 15(6): 1633-1646.
  • 4GALLAND F, BERTAUX N, REFREGIER P. Minimum description length synthetic aperture radar image segmentation[J]. IEEE Tran on Image Processing, 2003, 12(9): 995-1006.
  • 5PREDERIC G, JEAN-MARIE N, HELENE S, et al. Unsupervised synthetic aperture radar image segmentation using Fisher distribution[J]. IEEE Tran on Geoscience and Remote Sensing, 2009, 47(8): 2966-2972.
  • 6GOODMAN J W. Statistical properties of laser speckle patterns[M]. Berlin, Germany: Springer-Verlag, 1975: 9-75.
  • 7AYED I B, MITICHE A, BELHADJ Z. Multiregion level-set Partitioning of synthetic aperture radar images[J]. IEEE Trans on Pattern Analysis and Machine Intelligent, 2005, 27(5): 793-800.
  • 8GERMAIN O, REFREGIER P. Edge location in SAR images: performance of the likelihood ratio filter accuracy improvement with an active contour approach[J]. IEEE Trans on Imag Processing, 2001, 10(1): 3-78.
  • 9曹宗杰,闵锐,庞伶俐,皮亦鸣.基于统计模型的变分水平集SAR图像分割方法[J].电子与信息学报,2008,30(12):2862-2866. 被引量:13
  • 10TISON C, NICOLAS J M, TUPIN F, et al. A new statistical model for Markovian classification of urban areas in high-resolution SAR images[J]. IEEE Trans on Geoscience and Remote Sensing, 2004, 42(10): 2046-2057.

二级参考文献17

  • 1杨鸿波,时永刚,邹谋炎.一种非参数估计的活动围道图像分割方法[J].电子与信息学报,2004,26(12):1849-1855. 被引量:5
  • 2Casselles V, Catte F, and Coll T, et al.. A geometric model for active contours. Numerische Mathematik, 1993, 66(1)- 1-31.
  • 3Malladi R, Sethian J A, and Vemuri B C, et al. Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158-175.
  • 4Galland F, Bertaux N, and Refregier P. Minimum description length synthetic aperture radar image segmentation. IEEE Trans. on Image Processing, 2003, 12(9): 995-1006.
  • 5Ayed I B, Vazquez C, and Mitiche A, et al.. SAR image segmentation with active contours and level sets. IEEE International Conference on Image Processing, Singapore, Oct.24-27, 2004, 4: 2717-2720.
  • 6Ayed I B, Mitiche A, and Belhadj Z. Multiregion level-set partitioning of synthetic aperture radar images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(5): 793-800.
  • 7Malladi R, Sethian J A, and Vemuri B C, et al.. Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158-175.
  • 8Caselles V, Kimmel R, and Sapiro G, Geodesic active contours. International Journal of Computer Vision, 1997, 22 (1): 61-79.
  • 9Chan T and Vese L. Active contours without edges. IEEE Trans. on Image Processing, 2001, 10(2): 266-277.
  • 10Li C M, Xu C Y, Gui C F, and Fox M D. Level set evolution without re-initialization: A new variational formulation. IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 20-25, 2005, 1: 430-436.

共引文献20

同被引文献17

  • 1Radke R J, Andra S, Al-Kofahi O, et al. Image Change Detection Algorithms: a Systematic Survey[J]. IEEE Transactions on Image Processing, 2005, 14(3): 294-307.
  • 2Fransson J E S, Walter F, Blennow K, et al. Detection of Storm-damaged Forested Areas Using Airborne CARABAS-Ⅱ VHF SAR Image data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(10): 2170-2175.
  • 3Ridd M K, Liu J J. A Ccomparison of Ffour Aalgorithms for Cchange Ddetection in an Uurban Eenvironment[J]. Remote Sensing Environment, 1998, 63(2): 95-100.
  • 4Bobolo F, Bruzzone L. A Detail-preserving Scale-driven Approach to Change Detection in Multitemporal SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(12): 2963-2972.
  • 5Carincotte C, Derrode S, Bourennane S. Unsupervised Change Detection on SAR Images Using Fuzzy Hidden Markov Chains[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(2): 432-441.
  • 6Gong M G, Zhou Z Q, Ma J J. Change Detection in Synthetic Aperture Radar Images Based on Image Fusion and Fuzzy Clustering[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2141-2151.
  • 7Bezdek J. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. Heidelberg: Springer, 1981.
  • 8Krinidis S, Chatzis V. A Robust Fuzzy Local Information c-means Clustering Algorithm[J]. IEEE Transactions on Image Processing, 2010, 19(5): 1328-1337.
  • 9Shi Y, Eberhart R C. A Modified Particle Swarm Otimizer[C]//Proceeding of IEEE World Congress on Computational Intelligence. Piscataway: IEEE, 1998: 69-73.
  • 10Gong Y J, Zhang J, Liu O, et al. Optimizing the Vehicle Routing Problem with Time Windows: a Discrete Particle Swarm Optimization Approach[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42(2): 254-267.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部