期刊文献+

基于矢量重构的相干信源测向 被引量:3

Direction Finding for Coherent Signals Based on Vector Reconstruction
下载PDF
导出
摘要 传统的解相干方法主要有空间平滑和子空间拟合两类,但这些方法或者阵列利用率低或者计算复杂度高,因此寻求计算量小且阵列利用率高的解相干测向方法有重要意义.该文基于前后向矢量重构理论,提出一种相干信源测向方法.根据信号导向矢量矩阵与信号子空间张成同一空间,充分利用大特征值对应的特征向量,采用前后向矢量重构方法构造列满秩的数据矩阵,利用总体最小二乘?旋转不变子空间算法进行波达方向估计.该方法适用于独立信源和相干信源同时存在的情况,具有良好的实用性,且运算过程简单,计算量小.理论分析和仿真结果表明了所提方法具有优良性能. The classical direction of arrival(DOA) estimation algorithms for coherent signals are mainly based on the spatial smoothing method and the subspace fitting algorithm.These methods suffer from small array aperture or heavy computation load.It is important to find a method for coherent signals with a large array aperture and small computation load.In this paper,a new method is proposed based on the vector reconstruction technique for coherent signals using the total least square-estimation of signal parameters via rotational invariance technique(TLS-ESPRIT) algorithm.The proposed method exploits all eigenvectors corresponding to the signal subspace and the forward-backward vector reconstruction technique to construct the receiving data matrix.The method is effective when both independent and coherent signals are incident on the array,and useful in practical signal environment.Theoretical analysis and simulation results show that the proposed method has low computation load,large array aperture and satisfactory estimation performance.
作者 刁鸣 安春莲
出处 《应用科学学报》 EI CAS CSCD 北大核心 2011年第3期261-266,共6页 Journal of Applied Sciences
基金 黑龙江省科技攻关项目基金(No.GZ08A101)资助
关键词 DOA估计 相干信号 总体最小二乘-旋转不变子空间算法 矢量重构 信号子空间 DOA estimation coherent signals total least square-estimation of signal parameters via rotational invariance technique(TLS-ESPRIT) algorithm vector reconstruction signal subspace
  • 相关文献

参考文献15

  • 1QI Chongying,CHEN Zhijie,WANG Yongliang,ZHANG Yongshun.DOA estimation for coherent sources in unknown nonuniform noise fields[J].IEEE Transactions on Aerospace and Electronic Systems,2007,43(3):1195-1204.
  • 2HAN Fangming,ZHANG Xianda.An ESPRIT-like algorithm for coherent DOA estimation[J].IEEE Letters on Antennas and Wireless Propagation,2005,4:443-446.
  • 3XU Yunlin,ZHANG Hongshun,ZHAN Jiangshu.A signal-subspace-based ESPRIT-like algorithm for coherent DOA estimation[C] //2009 IEEE International Conference on Wireless Communications,Networking and Mobile Computing,Reading:2009:1-4.
  • 4KRIM H,VIBERG M.Two decades of array signal processing researc[J].IEEE Transactions on Signal Processing,1996,13(4):67-94.
  • 5CHOI Y H.Maximum likelihood estimation for angles of arrival of coherent signals using a coherency profile[J].IEEE Transactions on Signal Processing,2000,48(9):2679-2682.
  • 6CHIAO E C,LORENZEL F,HUDSON R E,KUNG Y.Stochastic maximum-likelihood DOA estimation in the presence of unknown nonuniform noise[J].IEEE Transactions on Signal Processing,2008,56(7):3038-3044.
  • 7PARK C S,CHOI J H,YANG J W,NAH S P.Direction of arrival estimation using weighted subspace fitting with unknown number of signal sources[C] //2009 International Conference on Advanced Communication Technology,Reading,2009:2295-2298.
  • 8ZHANG Yufeng,YE Zhongfu.Efficient method of DOA estimation for uncorrelated and coherent signals[J].IEEE Antennas and Wireless Propagation Letters,2008,7:799-802.
  • 9YE Zhongfu,ZHANG Yufeng,LIU Chao.Directionof arrival estimation for uncorrelated and coherent signals with fewer sensors[J].IEEE Microwaves,Antennas & Propagation,2009,3(3):473-482.
  • 10陈辉,黄本雄,王永良.基于互相关矢量重构的解相干算法研究[J].系统工程与电子技术,2008,30(6):1005-1008. 被引量:8

二级参考文献21

  • 1董晓辉,柯亨玉,董志飞.阵列误差对四阶MUSIC算法到达角估计的影响[J].现代雷达,2005,27(1):41-43. 被引量:5
  • 2Shan T J, Wax M, Kailath T. On spatial smoothing for direction-of-arrival estimation of coherent signals[J]. IEEE Trans. onASSP, 1985, 33(4): 806-811.
  • 3TWilliams R, Prasad S, KMahalanabis A. An improved spatial smoothing technique for bearing estimation in a muhipath environment[J]. IEEE Trans. on ASSP, 1988, 36(4): 425-432.
  • 4Qi Chongying, Wang Yongliang, Zhang Yongshun. Spatial Difference smoothing for DOA estimation of coherent signals[J]. IEEE Signal Processing Letters, 2005, 12( 11 ) : 800 - 802.
  • 5Choi Y H. Subspace-based coherent source localization with forward/backward covariance matrices [J]. Porc. Inst. Elect. Eng. , Radar Sonar Navigat. , 2002, 19(3): 145-151.
  • 6Al-Ardi E M, Shubair R M, Al-Mualla E M. Computationally efficient high resolution DOA estimation in multipath environ ment[J]. Electron. Lett., 2004, 40(14): 908-910.
  • 7Wang BuHong, Wang YongLiang, Chen Hui. Weighted spatial smoothing for direction-of-arrival estimation of coherent signals [C]// Proceedings of IEEE Antennas and Propagation Society International Symposium San Antonio. Texas, USA:IEEE, APSIS, 2002, 2: 668-671.
  • 8张志涌.精通Matlab[M].北京:北京航空航天大学出版社,2006.
  • 9SCHMIDT R O.Multiple emitter location and signal parameter estimation[J].IEEE Transactions on Antennas and Propagation,1986,34(3):267-280.
  • 10SWINDLEHURST A,KAILATH T.A performance analysis of subspace-based methods in the presence of model error:part I-the MUSlC algorithm[J].IEEE Transactions on Signal Processing,1992,40(7):1758-1774.

共引文献10

同被引文献36

  • 1Yu Y T, Lui H S, Niow C H, HuI H T. Im- proved DOA estimations using the receiving mutual impedances for mutual coupling compensation: an experimental study [J]. IEEE Transactions on Wire- less Communication, 2011, 10(7): 2228-2233.
  • 2YANG Peng, YANG Feng, NIE Zaiping. Fast 2D DOA and polarization estimation using arbitrary confor- mal antenna array [J]. Progress in Electromagnetics Research C, 2012, 25: 119-132.
  • 3LI Jian, COMPTON R T. Angle and polarization es- timation using ESPRIT with a polarization sensitive array [J]. IEEE Transactions on Antennas and Prop- agation, 1991, 39(9): 1376-1383.
  • 4HE Jin, LIu Zhong. Computationally efficient 2D di- rection finding and polarization estimation with arbi-trarily spaced electromagnetic vector sensors at un- known locations using the propagator method [J]. Signal Processing, 2009, 19(3): 491-503.
  • 5Xc Y G, Liu Z W, WONG K T, CAO J L. Virtual manifold ambiguity in HOS-based direction-finding with electromagnetic vector-sensors [J]. IEEE Trans- action on Aerospace and Electronic Systems, 2008, 44(4): 1291-1308.
  • 6COSTA M, RICHTER A, KOIVUNEN V. Elevation and polarization estimation for arbitrary polarimetric ar- ray congurations [C]//IEEE Workshop on Statistical Signal Process, 2009: 261-264.
  • 7SAXENA R, KULBIR S. Fractional Fourier transform: a novel tool for signal processing [J]. Journal of In- dian Institute Science, 2005, 85: 11-26.
  • 8KENNEDY J, EBERHART R C. Particle swarm opti- mization [C]//Proceeding of IEEE Internal Confer- ence on Neural Networks, 1995: 1942-1948.
  • 9SWINDLEHURST A, VIBERG M. Subspace fitting with diversely polarized antenna arrays [J]. IEEE Trans- actions on Antennas and Propagation, 1993, 41(12): 1687-1694.
  • 10SHI Y, EBERHART R. Empirical study of particle swarm optimization [J]. Proceeding of Congress on Computational Intelligence, 1999: 1949-1950.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部