期刊文献+

一种改进的自适应距离保持水平集演化方法 被引量:2

Improved Method of Adaptive Distance Preserving Level Set Evolution
下载PDF
导出
摘要 提出一种改进的自适应距离保持水平集演化方法.该方法定义新的图像相依权系数与停止函数,有效解决了演化曲线对初始位置敏感的问题.零水平集曲线能根据图像性质自适应地决定向内还是向外运动,而且在像素灰度值相等的区域曲线能继续演化直至目标物体边界,并提高了零水平集曲线对深度凹陷边界的捕获能力.实验结果表明,该方法能有效检测目标边界,且有较强的抗噪能力. In this paper,an improved method of adaptive distance preserving level set evolution is proposed.A weighting coefficient depending on information in the image and a stop function are defined.The evolution curve is no longer sensitive to the position of the initial curve,which can be anywhere in the image.The curve of zero level set can detect object boundaries when it is in a region with pixels having the same gray value.The method enhances capability of detecting boundary concavities.Experiments on images with different object boundaries show that the proposed method can detect the object contour effectively and has strong anti-noise ability.
出处 《应用科学学报》 EI CAS CSCD 北大核心 2011年第3期274-280,共7页 Journal of Applied Sciences
基金 国家自然科学基金(No.60970142)资助
关键词 图像分割 偏微分方程 几何活动轮廓 距离保持水平集方法 image segmentation partial differential equation geometric active contour mode distance pre-serving level set method
  • 相关文献

参考文献16

  • 1SAPIRO G.Geometric partial differential equations and image analysis[M].[S.l.] :Cambridge University Press,2001.
  • 2LI Chunming,LIU Jundong,MARTIN D F.Segmentation of external force field for automatic initialization and splitting of snakes[J].Pattern Recognition,2005,38:1947-1960.
  • 3SUMENGEN B,MANJUNATH B S.Edge-flow driven variational image segmentation:theory and performance evolution[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2005,8:1-16.
  • 4KIM J,WILLSKY A.Nonparametric shape priors for active contour-based image segmentation[J].Signal Processing,2007,87(12):3021-3044.
  • 5MICHAILOVICH O,RATHI Y,TANNENBAUM A.Image segmentation using active contours driven by the Bhattacharyya gradient flow[J].IEEE Transactions on Image Processing,2007,16(11):2787-2801.
  • 6ZHANG Kaihua XU Shoushi ZHOU Wengang LIU Bo.Active Contours Based on Image Laplacian Fitting Energy[J].Chinese Journal of Electronics,2009,18(2):281-284. 被引量:7
  • 7MYRONENKO A,SONG Xubo.Global active contourbased image segmentation via probability alignment[C] //IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2009:250-256.
  • 8ZHANG Kaihua,SONG Huihui,ZHANG Lei.Active contours driven by local image fitting energy[J].Pattern Recognition,2010,43:1199-1206.
  • 9OSHER S,FEDKIW R P.Level set methods:an overview and some recent results[J].Journal of Computation Physics,2001(2):463-527.
  • 10VEMURI B,CHEN Y.Geometric level set methods in imaging,vision and graphics[M].Springer:New York,2003.

二级参考文献34

  • 1陈强,王平安,夏德深.形状统计Mumford-Shah模型的MR图像左心室外轮廓分割[J].计算机学报,2006,29(11):2044-2051. 被引量:3
  • 2何传江,唐利明.几何活动轮廓模型中停止速度场的异性扩散[J].软件学报,2007,18(3):600-607. 被引量:23
  • 3CremersD,RoussonM,DericheR. Review of statistical approaches to level set segmentation:integrating color,texture,motion and shape[J].International Joumal of Computer Vision, 2007, 72(2):195-215.
  • 4Kass M, Witkin A, Terzopoulos D. Snake: Active contour Models[J]. International Journal of Computer Vision, 1998, 1 (1): 321-331.
  • 5Cootes T F, Taylor C J, Cooper D H, et al. Active shape models--their training and application[J]. Computer Vision and Image Understanding, 1995,61 ( 1 ):38-59.
  • 6Rousson M,Paragios N. Prior Know ledge level set represent & visual grouping[J]. International Journal of Computer Vision, 2008,76(3):231 -243.
  • 7Leventon M E,Grimson W E L,Faugers O. Statistical shape influence in geodesic active contour[C]//IEEE Conference of Computer Vision and Pattern Recognition(CVPR). 2000,1 : 316 323.
  • 8Tsai A,Yezzi A,Wells W, et al. A shape-based approach to the segmentation of medical imagery using level sets[J]. IEEE Transactions on Medical Imaging,2003,22(2) : 137- 154.
  • 9Kim J ,Cetin M,Willsky A S. Nonparametric shape priors for actire contour based image segmentation[J]. Signal Processing, 2007,87(12): 3021-3044.
  • 10Cremers D, Osher S J, Soatto S. Kernel density estimation and intrinsic alignment for shape priors in level set segmentation [J].International Journal of Computer Vision,2006,69(3) :335 -351.

共引文献66

同被引文献34

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部