期刊文献+

Brain expression quantitative trait locus mapping informs genetic studies of psychiatric diseases

脑组织的表达数量性状遗传位点定位方法解析精神疾病遗传基础(英文)
原文传递
导出
摘要 Genome-wide association study(GWAS) can be used to identify genes that increase the risk of psychiatric diseases.However,much of the disease heritability is still unexplained,suggesting that there are genes to be discovered.Functional annotation of the genetic variants may increase the power of GWAS to identify disease genes,by providing prior information that can be used in Bayesian analysis or in reducing the number of tests.Expression quantitative trait loci(eQTLs) are genomic loci that regulate gene expression.Genetic mapping of eQTLs can help reveal novel functional effects of thousands of single nucleotide polymorphisms(SNPs).The present review mainly focused on the current knowledge on brain eQTL mapping,and discussed some major methodological issues and their possible solutions.The frequently ignored problems of batch effects,covariates,and multiple testing were emphasized,since they can lead to false positives and false negatives.The future application of eQTL data in GWAS analysis was also discussed. 全基因组关联分析(genome-wide association study, GWAS)是一种在人类全基因组范围内寻找与疾病相关的序列变异的方法,它也是寻找精神疾病易感基因的一个有力工具。然而,疾病遗传力的来源在很大程度上仍未知,期待将来的研究能发现更多的疾病易感基因。对遗传变异生物学功能的了解能提高GWAS发现新易感基因的效能。表达数量性状遗传位点(expression quantitative trait loci, eQTLs)是指一些能调节基因表达水平的位点。eQTL作图法可揭示众多单核苷酸多态(single nucleotide polymorphisms, SNPs)的未知生物学功能。本综述主要回顾了脑组织中eQTL的研究现状,并对eQTL定位方法的局限性及相应的对策进行了讨论。此外,对在实际研究中经常被忽略的一些能导致假阳性和假阴性关联结果的问题(例如批次效应、协变量和多重测试)进行了探讨。最后,对eQTL研究在GWAS 分析中的应用进行了展望。
作者 刘春宇
出处 《Neuroscience Bulletin》 SCIE CAS CSCD 2011年第2期123-133,共11页 神经科学通报(英文版)
关键词 genome-wide association study BRAIN psychiatric diseases expression quantitative trait loci GENETICS single nucleotide polymorphism 全基因组关联分析 大脑 精神疾病 表达数量性状遗传位点 遗传学 单核苷酸多态
  • 相关文献

参考文献88

  • 1Weissman MM, Bland RC, Canino GJ, Faravelli C, Greenwald S, Hwu HG, et al. Cross-national epidemiology of major depression and bipolar disorder. JAMA 1996, 276 (4): 293-299.
  • 2McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 2008, 30: 67-76.
  • 3Piletz JE, Zhang X, Ranade R, Liu C. Database of genetic studies of bipolar disorder. Psychiatr Genet 2010, 21(2): 57~58.
  • 4International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460 (7256): 748-752.
  • 5Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008, 40 (9): 1056-1058.
  • 6Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, et aL Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry 2010. [Epub ahead of print].
  • 7Liu Y, Blackwood DH, Caesar S, de Geus E J, Farmer A, Ferreim MA, et al. Meta-analysis of genome-wide association data of bipo- lar disorder and major depressive disorder. Mol Psychiatry 2011, 16 (1): 2-4.
  • 8Psychiatric GWAS Consortium Steering Committee. A framework for interpreting genome-wide association studies of psychiatric dis- orders. Mol Psychiatry 2009, 14 (1): 10-17.
  • 9Vineis P, Pearce N. Missing heritability in genome-wide association study research. Nat Rev Genet 2010, 11 (8): 589.
  • 10Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 2010, 11 (6): 446-450.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部