期刊文献+

脊柱交界区终板抗压强度分布规律的生物力学研究 被引量:9

Stress distribution of endplate at cervicothoracic,thoracolumbar and lumbosacral junction:a biomechanical study
下载PDF
导出
摘要 目的:探讨脊柱交界区终板不同位点抗压强度及其分布规律。方法:选用5具成年男性新鲜脊柱标本的颈胸段、胸腰段及腰骶段,共65个椎体125个终板,采用环形取点的方式,对每个终板平面的49个测试点用直径1.5mm的平底压头进行连续压缩加载试验,获得最大压缩力,所得数据进行统计分析。结果:以椎体为单位,颈胸段终板从C4开始抗压强度逐渐下降,至C7达到最低点,C7~T1明显升高。胸腰段各椎体终板的抗压强度呈依次上升趋势,腰骶段L3、L4终板抗压强度继续上升,L5出现降低,S1节段再次升高。颈胸段与胸腰段抗压强度均小于腰骶段(P<0.01)。上下终板抗压强度变化趋势相似。各段椎体抗压强度下终板强于上终板(P<0.01)。椎间隙相邻面上一椎体下终板的抗压强度大于下一椎体上终板(P<0.05)。由内至外,抗压强度逐渐增大(P<0.05)。颈胸段和腰骶段的后部终板抗压强度大于前部,而胸腰段为前部大于后部(P<0.05)。结论:不同节段终板的抗压强度分布规律不同,临床安放椎间置入物时需注意置入物的大小及放置位置。 Objective:To investigate the stress distribution of endplate at cervicothoracic,thoracolumbar and lumbosacral junction.Method:A total of 65 vertebral bodies(125 endplates) from 5 intact human vertebrae(C4-T1,T11-L2,L3-S1) was used for test,49 test points at each endplate were indented by using a 1.5mm-diameter plane indenter,a continuous load was added in all specimenand,the results were processed by statistical analyses.Result:The failure load distributions of endplates varied significantly among the three sites.At cervicothoracic junction,the failure load decreased from C4 to C7,and increased from T1.At thoracolumbar junction,the failure load increased from T11 to L2,which continued to L3 and L4,but ceased in L5,and then increased again from S1.The yield load in endplates of cervicothoracic and thoracolumbar junction was lower than that in lumbosacral junction(P0.05).The failure load of inferior endplates was significantly higher than that of superior endplates(P0.01).As for intervertebral space,the cranial endplates had a higher yield stress than caudal endplates(P0.05).The failure load increased from central to peripheral zones.At cervicothoracic and lumbosacral junction,the failure load of posterior endplates was higher than anterior regions,but on the contrary for endplates of thoracolumbar junction(P0.05).Conclusion:The stress distributions of the endplates vary significantly among three junctions.It is cautious to consider their size and location when placing instrument.
出处 《中国脊柱脊髓杂志》 CAS CSCD 北大核心 2011年第5期395-398,共4页 Chinese Journal of Spine and Spinal Cord
关键词 脊柱 交界区 终板 抗压强度 生物力学 Spine Junction Endplate Compressive stress Biomechanics
  • 相关文献

参考文献14

  • 1Xiaobo W, Genevi'eve AD. Evaluation of effects of selected factors on inter-vertebral fusion-a simulation study[J].Med Eng & Phys,2005,27 : 197-207.
  • 2Pitzen T,Schmitz B,Georg T,et al.Variation of endplate thickness in the cervical spine [J].Eur Spine J,2004,13 (3):235- 240.
  • 3Panjabi MM,Chen NC,Shin EK,et al.The cortical shell architecture of human cervical vertebral bodies[J].Spine,2001,26 (22) :2478-2484.
  • 4Edwards WT,Zheng Y,Ferrara LA, et al. Structural features and thickness of the vertebral cortex in the thoracolumbar spine[J].Spine, 2001,26 (2) : 218-225.
  • 5Silva MJ,Wang C,Keaveny TM,et al.Direet and computed tomography thickness measurements of the human,lumbar vertebral shell and endplate [J].Bone, 1994,15(4):409-414.
  • 6Muller-Gerbl M,Weisser S,Linsenmeier U. The distribution of mineral density in the cervical vertebral endplates [J].Eur Spine J,2008,17(3) :432-438.
  • 7Zhao FD,Pollintine P,Hole BD,et al. Vertebral fractures usually affect the cranial endplate because it is thinner andsupported by less-dense trabecular bone [J].Bone,2009,44(2): 372-379.
  • 8Ordway NR, Lu YM, Zhang X, et al. Correlation of cervical endplate strength with CT measured subchondral bone density [J].Eur Spine J,2007,16(12) :2104-2109.
  • 9李志刚,郑连杰,李光灿,陈湘柘,夏重君.腰骶椎终板生物力学特性的实验研究[J].中国脊柱脊髓杂志,2007,17(3):210-213. 被引量:12
  • 10Grant JP,Oxland TR,Dvorak MF.Mapping the structural properties of the lumbosacral vertebral endplates[J].Spine,2001, 26(8) :889-896.

二级参考文献15

  • 1李鉴轶,朱青安,原林,赵卫东,林荔军,黄文华,吴旸.颈椎终板结构的生物力学研究[J].中华骨科杂志,2004,24(2):108-112. 被引量:24
  • 2Pitzen T,Wilke HJ,Caspar W,et al.Evalution of a new monocortial screw for anterior cervical fusion and plating by a combined biomechanical clinical study[J].Eur Spine J,1998,8(5):382-387.
  • 3Mizrahi J,Silva MJ,Keaveny TM,et al.Finite-element stress analysis of the normal and osteoporotic lumbar vertebral body[J].Spine,1993,18(14):2088-2096.
  • 4Vesterby A,Mosekilde L,Gundersen HJ,et al.Biologically meaningful determinants of the in vitro strength of lumbar vertebrae[J].Bone,1991,12(3):219-224.
  • 5Edwards WT,Zheng Y,Ferrara LA,et al.Structural features and thickness of the vertebral cortex in the tboracolumbar spine[J].Spine,2001,26 (2):218-225.
  • 6Oxland TR,Grant JP,Dvorak MF,et al.Effects of endplate removal on the structural properties of the lower lumbar vertebral bodies[J].Spine,2003,28(8):771-777.
  • 7Oki S,Matsuda Y,Shibata T,et al.Morphologic differences of the vascular buds in the vertebral endplate:scanning electron microscopic study[J].Spine,1996,21(2):174-177.
  • 8Silva MJ,Wang C,Keaveny TM,et al.Direct and computed tomography thickness measurements of the human,lumbar vertebral shell and endplate[J].Bone,1994,15(4):409-414.
  • 9Grant JP,Oxland TR,Dvorak MF.Mapping the structural properties of the lumbosacral vertebral endplates[J].Spine,2001,26(8):889-896.
  • 10Pitzen T,Schmitz B,Georg T,et al.Variation of endplate thickness in the cervical spine[J].Eur Spine J,2004,13(3):235-240.

共引文献32

同被引文献165

引证文献9

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部