期刊文献+

Image smoothing of multispectral imagery based on the HNN and geo-statistics

Image smoothing of multispectral imagery based on the HNN and geo-statistics
原文传递
导出
摘要 A new method for image down-scaling using geostatistical interpolation or smoothing based on the Hopfield Neural Network(HNN) and zero semivariance value is introduced.The method utilises the smoothing effect of the semivariogram matching process to produce the smoothened sub-pixel multispectral(MS) image with smaller RMSEs in comparison with the bilinear interpolation.In fact,the zero semivariograms increase the spatial correlation between the adjacent sub-pixels of the superresolution image.Containing higher spatial correlation,the resulting super-resolution MS image has smaller RMSEs compared with the original coarse image. A new method for image down-scaling using geostatistical interpolation or smoothing based on the Hopfield Neural Network(HNN) and zero semivariance value is introduced.The method utilises the smoothing effect of the semivariogram matching process to produce the smoothened sub-pixel multispectral(MS) image with smaller RMSEs in comparison with the bilinear interpolation.In fact,the zero semivariograms increase the spatial correlation between the adjacent sub-pixels of the superresolution image.Containing higher spatial correlation,the resulting super-resolution MS image has smaller RMSEs compared with the original coarse image.
出处 《遥感学报》 EI CSCD 北大核心 2011年第3期640-644,共5页 NATIONAL REMOTE SENSING BULLETIN
关键词 image smoothing HNN Geostistics image smoothing HNN Geostistics
  • 相关文献

参考文献11

  • 1Akgun T, Altunbasak Y and Mersereau R M. 2005. Super-resolution re- construction of hyperspectral images, IEEE Transactions on Image Processing, 14:1860-1875.
  • 2Atkinson P M and Curran P J. 1995. Defining an optimal size of sup-port for remote sensinginvestigations. IEEE Transactions on Geo- science and Remote Sensing, 33:768-776.
  • 3Atkinson P M and Tate C. 2000. Spatial Scale Problems and Geosta- tistical Solutions: A review, The Professional Geographer, 52: 607-623.
  • 4Elad M and Feuer A. 1999. Super-resolution reconstruction of image sequences, IEEE Transactions on Pattern Analysis and Machine Intelligence, 21: 817-834.
  • 5Freeman W T, Jones T R and Pasztor E C. 2002. Example-based super- resolution. IEEE Computer Graphics and Applications, 22:56-65.
  • 6Nguyen Q M, Atkinson P M and Lewis H G. 2006. Super-resolution mapping using Hopfield neural netwok with fused images, IEEE Transactions on Geoscience and Remote Sensing, 44(3): 736-749.
  • 7Nguyen Q M, Duong D V, Peter M, Atkinson and Hugh G L. 2009. Downscaling Multispectral Imagery Based on HNN Using For- ward Model. 7th FIG Regional Conference on Spatial Data Serv- ing People: Land Governance and the Environment-Building the Capacity, Hanoi.
  • 8Pinilla R C and Ariza P F J. 2002. Restoring SPOT images using PSF- derived deconvolution filters. International Journal of Remote Sensing, 23:2379-2391.
  • 9Schneider W and Steinwendner J. 1999. Land cover mapping by interrelated segmentation and classification of satellite images. International Ar- chives of Photogrammetry and Remote Sensing, 32(7): 46-52.
  • 10Tatem A J, Lewis H G, Atkinson P M and Nixon M S. 2002. Super- resolution land cover pattern prediction using a Hopfield neural network, in G. M. Foody and P. M. Atldnson (eds), Uncertainty in Remote Sensing and GIS, John Wiley & Sons, 59-76.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部