期刊文献+

白化主成分分析类算法在人脸识别中的应用

Whitening PCA-clas algorithm for face recognition
原文传递
导出
摘要 针对能量谱的不平衡性会影响人脸识别效果的问题,基于白化脸的概念提出了白化主成分分析类算法的框架。该算法框架使用1个白化滤波器和1个低通滤波器对原始图像进行预处理,然后结合传统的PCA类算法提取特征向量(或矩阵),最后通过k-NN分类方法进行人脸识别。利用ORL人脸图像库进行实验,实验结果表明该算法框架改善了人脸识别的效果,提高了识别的正确率。 The unbalanced power spectra of facial images will result in potential problems when used in face recognition.To solve this problem,a Whitening PCA-class algorithm framework based on the concept of whitenedfaces is proposed.In the algorithm framework,it preprocesses the original images by a whitening filter and a low-pass filter at first,then extract features vectors(or matrices) combined with the traditional PCA-class algorithm,and finally complete the face recognition through the k-NN classification method.The result on the experiments in the ORL face image database shows that the algorithm framework brings better recognition performance and achieves higher recognition accuracy.
作者 李靖 王萍
机构地区 天津大学理学院
出处 《计算机与应用化学》 CAS CSCD 北大核心 2011年第5期643-646,共4页 Computers and Applied Chemistry
基金 国家大学生创新性实验计划资助项目(081005637)
关键词 白化主成分分析类算法 主成分分析 二维主成分分析 双向二维主成分分析 Whitening PCA-class algorithm PCA 2DPCA (2D)~2PCA
  • 相关文献

参考文献2

二级参考文献10

  • 1周敬利,吴桂林,余胜生.基于BP神经网络的人脸检测算法[J].计算机工程,2004,30(11):34-36. 被引量:20
  • 2刘育明,梁军,钱积新.工业流化床反应器结块监视的动态PCA方法[J].化工学报,2004,55(9):1546-1549. 被引量:12
  • 3Pentland BM. A human face recognition and face image Set's topology. CVGIP Image Understanding, 1994, 59(2) :54 -261.
  • 4Bledsoe WW. The Model Method in Facial Recognition. Tech Rep PRI:15, Panoramic Research Inc, Palo Alto, CA, 1964.
  • 5Duny RD, et al. Neural network approaches to image compression. Prec IEEE, 1995, 83:288 -303.
  • 6Tenenbaum JB, Vinde Silva and John CLangford. A global geometric frameworkfor nonlinear dimensionality reduction. Science, 2000, 290(5500) :23192323.
  • 7Hutchinson R and Welsh W. Comparison of neural networks and conventional techniques for feature location in facial images. In First IEE International Conference on ANN, 1989, 10:201 -205.
  • 8Robert Hecht-Nielson. Theory of the back propagation neural network. IJCNN, 1989, 1:583-604.
  • 9Roweis ST, et al. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290 (5500) :2323 - 2326.
  • 10严寿鹏.粗氩塔“氮塞”的分析及处理[J].深冷技术,2003(3):44-46. 被引量:15

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部