摘要
针对能量谱的不平衡性会影响人脸识别效果的问题,基于白化脸的概念提出了白化主成分分析类算法的框架。该算法框架使用1个白化滤波器和1个低通滤波器对原始图像进行预处理,然后结合传统的PCA类算法提取特征向量(或矩阵),最后通过k-NN分类方法进行人脸识别。利用ORL人脸图像库进行实验,实验结果表明该算法框架改善了人脸识别的效果,提高了识别的正确率。
The unbalanced power spectra of facial images will result in potential problems when used in face recognition.To solve this problem,a Whitening PCA-class algorithm framework based on the concept of whitenedfaces is proposed.In the algorithm framework,it preprocesses the original images by a whitening filter and a low-pass filter at first,then extract features vectors(or matrices) combined with the traditional PCA-class algorithm,and finally complete the face recognition through the k-NN classification method.The result on the experiments in the ORL face image database shows that the algorithm framework brings better recognition performance and achieves higher recognition accuracy.
出处
《计算机与应用化学》
CAS
CSCD
北大核心
2011年第5期643-646,共4页
Computers and Applied Chemistry
基金
国家大学生创新性实验计划资助项目(081005637)