期刊文献+

一个核为零齐次的Hilbert级数型不等式及其逆 被引量:6

A HILBERT-TYPE SERIES-INEQUALITY AND ITS REVERSES WITH THE HOMOGENEOUS KERNELS OF ZERO DEGREE
下载PDF
导出
摘要 通过引入参数和应用权函数的方法,建立了一个具有最佳常数因子的核为零齐次的Hilbert级数型不等式及其等价形式,并得到它的逆式及等价式. By introducing some parameters and using the way of weight functions,a new Hilbert-type series-inequality and its equivalent form are given with the homogeneous kernel of zero degree and a best constant factor.The reverse and the equivalent form are also obtained.
作者 钟建华
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2011年第2期33-37,共5页 Journal of South China Normal University(Natural Science Edition)
基金 广东省高等学校自然科学基金重点研究项目(05Z026)
关键词 Hilbert级数型不等式 权函数 等价式 Hilbert-type series-inequality weight function kernel equivalent form
  • 相关文献

参考文献10

二级参考文献28

  • 1杨必成.一个推广的Hilbert类不等式及应用[J].工程数学学报,2004,21(5):821-824. 被引量:54
  • 2杨必成.一个Hilbert型积分不等式[J].浙江大学学报(理学版),2007,34(2):121-124. 被引量:43
  • 3钟五一,杨必成.Hilbert积分不等式含多参数的最佳推广[J].暨南大学学报(自然科学与医学版),2007,28(1):20-23. 被引量:15
  • 4HARDY G H. Note on a theorem of Hilbert concerning series of positive term [J]. Proceedings London Math Soc,1925,23(2) :Records of Proc xlv-xlvi.
  • 5YANG Bi-cheng. On an extension of Hilbert's integral inequality with some parameters [J]. The Australian Journal of Mathematical Analysis and Applications, 2004,1(1), Article 11 : 1-8.
  • 6YANG Bi-cheng, BRNETIC I, KRNIC M, et al. Generalization of Hilbert and Hardy-Hilbert integral inequalities [J]. Mathematical Inequalities and Applications, 2005,8(2): 259-272.
  • 7HARDY G H, LITTLEWOOD J E, POLYA G. Inequalities[M]. Cambridge: Cambridge University Press, 1952 : 255-286.
  • 8杨必成,数学的实践与认识,1994年,4卷,52页
  • 9匡继昌,常用不等式(第2版),1993年,79页
  • 10曹景天,数学的实践与认识,1990年,2卷,77页

共引文献141

同被引文献36

  • 1洪勇.涉及多个函数的Hardy型积分不等式[J].数学学报(中文版),2006,49(1):39-44. 被引量:11
  • 2HARDY G H. Note on a theorem of Hilbert concerning series of positive term[ J ]. Proc London Math Soc, 1925, 23(2) :5 -6.
  • 3MINTRINOVIC D S,PECARIC J E, FINK A M. Inequali- ties involving functions and their integrals and derivatives [ M ]. Boston : Kluwer Academic Publishers, 1991.
  • 4HE Bing, YANG Bicheng. On a half-discrete inequality with a generalized homogeneous kernel [ J 1. J Inequal Appl, doi : 10.1186/1029 - 242x - 2012 - 30.
  • 5HARDY G H, LITTLEWOOD J E, POLYA G. Ine- qualities [M ]. Cambridge: Cambridge Univ Press, 1952.
  • 6MINTRINOVIC D S, PECARIC J E, FINK A M. In- equalities Involving Functions and Their Integrals And- derivatives[M]. Boston: Kluwer Academic Publish- ers,1991.
  • 7KUANG Jichang. On new extensions of Hilbert's integral inequality[J]. J Math Anal Appl,1999,235:608-614.
  • 8YANG Bicheng. A mixed Hilbert-type inequality with a best constant factor[J]. International Journal of Pure and Applied Mathematics, 2005,20(3) : 319-328.
  • 9YANG Bicheng, CHEN Qiang. A Half-discrete Hil- bert-type inequality with a homogeneous kernel and an extension [J]. Journal of Inequalities and Applica- tions, 2011,124 : 1-21.
  • 10YANG Bicheng, MARIO K. A Half-discrete Hil- bert-type inequality with a General homogeneous kernel of degree 0 [J]. J of Methematical Inequali- ties, 2012,6 (3) : 401-417.

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部