期刊文献+

混合边界条件下一致抛物型方程解的爆破

下载PDF
导出
摘要 为了发展一致抛物型方程解的整体存在和爆破理论,文章研究了非线性抛物型方程μt=lu+g(x,t)f(u)在混合边界条件下解的爆破。该模型源于自然界中广泛存在的扩散现象,以往的研究已取得了许多卓有成效的结论,也发展了不少有效的处理方法,例如紧致性方法、单调性方法,但以往的方法很难对它进行较详细的刻划。作者以非线性抛物型方程解的泛涵的极大值原理为主要工具,结合比较原理、上下解方法和微分、积分不等式技巧,证明了其解在有限时间内具有爆破性质。
作者 王西静
出处 《忻州师范学院学报》 2011年第2期13-14,共2页 Journal of Xinzhou Teachers University
  • 相关文献

参考文献6

  • 1张海亮.Blow-up rate of positive solution of uniformly parabolic equations with nonlinear boundary conditions[J].Ann-of Diff Egs,2003,(3):439-444.
  • 2丁俊堂.Blow-up rate solutions and global solutions for a class of quasilinear parabolic equations with robin boundary conditions[J].Computers and Mathematics with Applications,2005,(49):689-201.
  • 3Keng Deng,H.A.Levine.The role of critical exponents in blow-up theorems:the sequal[J].Math.Anal.Appl,2000,(243):85-126.
  • 4F.Li,C.Xie.Existce and blow-up for a degenerate parabolic equation with a nonlocal Source[J].Nonlinear Analysis,2003,(52):533 -534.
  • 5王西静.非线性边界条件下一致抛物型方程解的整体存在[J].湖北民族学院学报(自然科学版),2010,28(4):436-438. 被引量:4
  • 6王西静.非线性边界条件下一致抛物型方程解的爆破[J].荆楚理工学院学报,2010,25(11):50-53. 被引量:1

二级参考文献7

  • 1张海亮,张武.BLOW-UP RATE OF POSITIVE SOLUTION OF UNIFORMLY PARABOLIC EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS[J].Annals of Differential Equations,2003,19(3):439-444. 被引量:6
  • 2丁俊堂.Blow-up rate solutions and global solutions for a class of quatliear parabolic equatons with robin boundary conditions[J].Computers and Mathematics with Applications,2005(49):689-201.
  • 3H.A.Leven.The role of critical exponents in blowup theorems[J].SIAM Review,1990(32):262-288.
  • 4Keng Deng,H.A.Levine.The role of critical exponents in blow-up theorems:the sequal[J].Math.Anal.Appl,2000(243):85-126.
  • 5丁俊堂.Blow-up rate solutions and global solutions for a class of quasilinear parabolic equations with robin boundary conditions[J].Computers and Mathematics with Applications,2005,49:689-201.
  • 6Leven H A.The role of critical exponents in blowup theorems[J].SIAM Review,1990,32:262-288.
  • 7Keng Deng,Levine H A.The role of critical exponents in blew-up theorems:the sequal[J].J Math Anal Appl,2000,243:85-126.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部