期刊文献+

基于规则的神经网络在模式分类中的应用 被引量:3

Application of rule-based neural network in pattern classification
下载PDF
导出
摘要 针对模式分类任务,提出一种基于粗糙集规则的神经网络构造方法.首先,利用粗糙集理论和遗传算法约简输入特征,在尽量保持分类能力不变的情况下降低条件属性维数,并推导出简练的分类规则集合.然后,以规则集为基础构造BP神经网络结构、确定网络层数、输入输出节点数等,并计算规则的条件属性重要度和依赖度2个参数对连接权值进行初始化.最后,通过一个实例验证了方法的有效性,结果表明该方法能有效解决传统神经网络构造难、解释难、过拟合等问题,提高了分类精度,降低了训练时间.此外,初步探讨了网络训练时对知识提炼的影响. To solve the problems of pattern classification,a method to construct the rough knowledge-based neural network is presented.First,the rough set theory and the genetic algorithm are used for feature reduction of the conditional attributes in order to reduce the number of the inputs without losing too much classification capacity,and the concise rules are generated.Based on the rules,BP(back propagation) network parameters,including number of layers,number of the input/output,connection weights etc.can be determined and initialized together with the two parameters,i.e.the conditional attribute significance and the dependence degree of rules.The method is proved to be valid by an experiment.The result shows that it not only overcomes the disadvantages of traditional neural network such as difficulty in determining the structure,incomprehensibility and over-fitting,but also improves the classification accuracy and reduces the training time.Additionally,the effect of network training on rule refining is discussed.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第3期482-486,共5页 Journal of Southeast University:Natural Science Edition
基金 江苏省自然科学基金资助项目(BK2009356) 江苏省高校自然科学基金资助项目(09KJB510003)
关键词 模式分类 粗糙集 遗传算法 特征约简 神经网络 pattern classification rough set genetic algorithm feature reduction neural network
  • 相关文献

参考文献10

  • 1李晓东,费树岷,张涛.基于奇异值特征和支持向量机的人脸识别[J].东南大学学报(自然科学版),2008,38(6):981-985. 被引量:20
  • 2李如强,陈进,伍星.FAULT DIAGNOSIS OF ROTATING MACHINERY USING KNOWLEDGE-BASED FUZZY NEURAL NETWORK[J].Applied Mathematics and Mechanics(English Edition),2006,27(1):99-108. 被引量:2
  • 3Fayyad U M. Data mining and knowledge discovery: making sense out of data [ J]. IEEE Expert, 1996, 11 (5) : 20-25.
  • 4Pawlak Z. Rough sets [ J ]. International Journal of In- formation and Computer Science, 1982, 11 ( 5 ) : 341 -356.
  • 5Walczak B, Massart D L. Rough sets theory [ J ]. Che- mometrics and Intelligent Laboratory Systems, 1999, 47 (1): 1-16.
  • 6Vinterbo S, Ohm A. Minimal approximate hitting sets and rule templates [ J ]. International Journal of Ap- proximate Reasoning, 2000, 25(2) : 123 - 143.
  • 7UCI machine learning repository. Zoo data set [ EB/ OL]. ( 1990-05-15 ) [ 2008-01-01 ]. http://archive. ics. uci. edu/ml/datasets/Zoo.
  • 8Pawlak Z, Skowron A. Rough sets and Boolean rea- soning [J]. Information Sciences, 2007, 177( 1 ) : 41 -73.
  • 9Ohm A. Discernibility and rough sets in medicine: tools and applications [ D ]. Trondheim : Department of Computer and Information Science, Norwegian Uni- versity of Science and Technology, 1999.
  • 10Mitra S, Mitra P, Pal S K. Evolutionary modular de- sign of rough knowledge-based network using fuzzy at- tributes [ J ]. Neurocomputing, 2001, 36 ( 1 ) : 45 -66.

二级参考文献12

  • 1Zhao W, Chellappa R, Phillips P J,et al. Face recognition: a literature survey [ J ]. Acm Computing Surveys, 2003,35 (4) : 399 - 459.
  • 2Hong Z. Algebraic feature extraction of image for recognition [ J ]. Pattern Recognition, 1991, 24 ( 3 ) : 211 - 219.
  • 3Klema V C, Laub A J. Singular value decomposition: its computation and some applications [ J ]. IEEE Transactions on Automatic Control, 1980, 25 ( 2 ) : 164 - 176.
  • 4Cortes C, Vapnik V. Support-vector network [ J ]. Machine Learning, 1995,20(3) : 273 -297.
  • 5Mayoraz E, Alpaydin E. Support vector machines for multi-class classification [ C ]//Proceedings of International Work-Conference on Artificial and Natural Neural Networks. Berlin,Germany, 1999, 2 : 833 - 842.
  • 6Hsu C W, Lin C J. A simple decomposition method for support vector machines [ J ]. Machine Learning, 2002,46 ( 1 ) : 291 - 314.
  • 7Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines [ J ]. IEEE Transactions on Neural Networks,2002,13 ( 2 ) :415 - 425.
  • 8Chang Chih-chung, Lin Chin-Jen. LIBSVM: a library for support vector machines [ EB/OL ]. (2001 ) [ 2008- 11 ]. http ://www. csie. ntu. edu. tw/ - cjlin/libsvm.
  • 9张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 10王蕴红,谭铁牛,朱勇.基于奇异值分解和数据融合的脸像鉴别[J].计算机学报,2000,23(6):649-653. 被引量:58

共引文献20

同被引文献26

  • 1包健,赵建勇,周华英.基于BP网络曲线拟合方法的研究[J].计算机工程与设计,2005,26(7):1840-1841. 被引量:21
  • 2宋玲,马军,连莉,张志军.文档相似度综合计算研究[J].计算机工程与应用,2006,42(30):160-163. 被引量:43
  • 3Brueckner J K.Internalization of airport congestion[J].Jour- nal of Air Transport Management, 2002,8 : 141-147.
  • 4Volpe National Transportation Systems Center.Enhanced Traf- fic Management System (ETMS) functional description[S]. Cambridge, MA: US Dept of Transportation, 2002.
  • 5Horonjeft R,Francis X M.Plarming and design of airports[M]. New York: McGraw-Hill, 1994.
  • 6Neufville R D, Odoni A.Airport systems planning, design, and management[M].New York: McGraw-Hill, 2003.
  • 7Blumstein A.Airport capacity: representation, estimation, opti- mization, TTA-1358-8-1[R].[S.1.]: Cornell Aeronautical Labo- ratory, 1960.
  • 8Gilbo E P.Airport capacity, representation, estimation, optimi- zation[J].IEEE Transactions on Control Systems Technology, 1993,1(3) : 144-154.
  • 9Tottn G E. Handbook of hydraulic fluid technology[M]. New York : Marcel Dekker, 2000 : 62-69.
  • 10邵婷婷,张水利,张永波.两种剔除异常数据的方法比较[J].现代电子技术,2008,31(24):148-150. 被引量:22

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部