摘要
针对当前油墨预置技术存在的预置精度低且易受印刷参数和印刷条件影响的问题,提出了基于人工神经元网络的智能油墨预置新技术.以实际合格印品为学习样本,将印刷条件参数和网点面积率参数作为输入特征量,实际的墨键开度值作为网络输出,选择3层BP网络构建印品图文数字信息与墨键控制参数间的映射关系,实现数字化印刷流程中快速、准确的油墨预置.多色胶印机印刷试验结果表明,该方法能有效缩短开机调整时间,提高印刷效率,降低生产成本.
In order to improve the ink-presetting precision in the different printing parameters and printing environment,in this paper a novel approach using ANN technique is presented.For precision and rapid ink-presetting in the digital printing process,with the actual qualified printing products as training samples,the printing parameters and dot area percentage as input characteristic values and actual ink key values as ANN output,a three-layer BP network is selected to establish the mapping between the graph-text information and the values of the ink key.The experiment result shows that this method can shorten the adjusting time of the offset press effectively,improve the printing efficiency and reduce production cost.
出处
《北京工业大学学报》
EI
CAS
CSCD
北大核心
2011年第5期657-660,共4页
Journal of Beijing University of Technology
基金
国家科技支撑计划资助项目(2006BAF03B01)
先进制造技术北京市重点实验室资助项目
关键词
油墨预置
人工神经网络
数字化印刷工作流程
多色胶印机
ink presetting
artificial neural network
digital printing workflow
multicolour offset press