期刊文献+

爆燃法制备纳米LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料

Deflagration Synthesis of Nanocrystalline LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 Cathode Materials
原文传递
导出
摘要 以Ni(NO_3)_2·6H_2O、Co(NO_3)_2·6H_2O、Mn(NO_3)_2和LiNO_3为金属原料,以柠檬酸为螯合剂和燃料制备出均一的前驱体。前驱体经干燥后在氧弹中快速爆燃制备出纳米LiNi_(1/3)Co_(1/3)3Mn_(1/3)O_2粉体,并生成了高结晶度的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料,其平均粒径约为200nm。将其分别在2.8~4.6V和2.8~4.3V电压范围内以0.05C速率恒流充放电,首次放电比容量分别为208.0mAh·g^(-1)和173.6mAh·g^(-1);以0.1C速率分别在2.8~4.6V和2.8~4.3V电压范围内循环20周后,容量保持率分别为89.3%和93.4%。 The homogenous precursor has been prepared using a mixed aqueous solution of Ni(N03)2·6H2O、Co(NO3)2·6H2O、Mn(NO3)2 and LiNO3 as metal sources and citric acid as chelating agent and fuel. The nanoerystalline LiNi1/3Co1/3Mn1/3O2 powder was rapidly synthesized by deflagrating the dried precursor in oxygen. The annealed LiNi1/3Co1/3Mn1/3O2 powder was mainly consisted of particle agglomerates with the primary particles size of 100-300 nrn. The high initial capacities of 208.0 mAh.g-1 (2.8--4.6 V) and 173.6 mAh·g-1 (2.8-4.3 V) were discharged at the rote of 0.05 C respectively. Its capacity retentions were 89.3% and 93.4% within the voltage range of 2.8-4.6 V and 2.8-4.3 V at 0.1 C after 20 cycles respectively.
出处 《火工品》 CAS CSCD 北大核心 2011年第1期49-52,共4页 Initiators & Pyrotechnics
关键词 锂离子电池 LINI1/3CO1/3MN1/3O2 爆燃合成 正极材料 Lithium ion battery LiNi1/3Co1/3Mn1/3O2 Deflagration synthesis Cathode material
  • 相关文献

参考文献13

  • 1Ohzuku T., Makimura,Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithiumion batteries[J].Chem. Lett., 2001(7):642-643.
  • 2Koyama Y.,Tanaka I.,Adachi H.,Makimum Y.; Ohzuku T. Crystal and electronic structures of super structural Li1-x[CO1/3 Ni1/3 Mn1/3]O2(0 <= x <= 1) [J]. J. Power Sources, 2003(119- 121): 644 -648.
  • 3Kim J. M.,Chung H. T. The first cycle characteristics of Li[Nil/3Co1/3Mn1/3]O2 charged up to 4.7V[J], Electrochim,Acta, 2004, 49 (6):937-944.
  • 4Lu C. H.,Shen B. Electrochemical characteristics of LiNi1/3 CO1/3Mn1/3 O2 powders prepared from microwavehydrothermally derived precursors[J]. J. Alloys Compd. 2010,497 (1-2): 159-165.
  • 5Shaju K. M., Rao G. V. S., Chowdari B. V. R. Influence of Li-ion kinetics in the cathodic performance of layered Li(Ni1/3Co1/3Mn1/3)O2[J]. J. Electrochem. Soc., 2004, 151 (9) A1 324-A1 332.
  • 6Ding Y. H., Zhang P.,Long Z. L.,Jiang Y.,Gao D. S. The morphology, structure and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 prepared by electrospun method[J].J. Alloys Compd., 2008, 462 (1-2):340-342.
  • 7Reddy M. V.,Rao G. V. S., Chowdari B. V. R. J. Synthesis by molten salt and cathodic properties of Li(Ni1/3Co1/3 Mn1/3)O2[J]. J. Power Sources, 2006, 159 (1):263-267.
  • 8Vasylkiv O. Sakka Y., Skorokhod V. V. Nano-explosion synthesis of multi-component ceramic nano-composites[J]. J. Eur. Ceram Soc., 2007, 27 (2-3):585-592.
  • 9Xie X. H., Li X. J., Yan S. L., Huang W. Y., Wang M., Wu H. B. Synthesis of lithium and zinc oxide nanoagglomerations[J]. Rare Metal Mat. Eng., 2006, 35(Z2):355-358.
  • 10Chavan S. M., Babrekar M. K., More S. S., Jadhav K. M. Structural and optical properties of nanocrystalline Ni-Zn fen-ire thin films[J]. J. Alloys Compd., 2010,507 (1):21-25.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部