期刊文献+

点面电极系统低频流体驱动机理

Mechanism of fluid flow at low frequency in point-plane electrode system
下载PDF
导出
摘要 为了弥补传统交流电动力学理论在解释微流体反向流动方面的不足,开发了一种新型三维点面电极系统并进行微流体驱动实验,分析了低频条件下电化学、交流电热等因素对微流体驱动的影响.实验结果表明,点面电极系统中广频范围内(10~3×106Hz)的微流体流动方向均为由点电极流向面电极,这一现象与利用交流电渗理论预测的流体流动方向相反.实验验证了低频条件下电化学反应在流体流动中的重要作用.结果表明,电化学反应是点面电极系统中低频条件下微流体流动现象的主要因素. To make up the deficiency of traditional ac electrohydrodynamics in explaining fluid flowing in opposite direction,a 3D point plane electrode system is devised to carry out microfluidic driving experiments,and the influence of electrochemistry and ac electro-thermal on microfluidic driving under low ac frequency has been analyzed.It is found that the flow direction under ac range of 10 Hz~3 MHz in the device is point to plane all the time,which is opposite to the prediction from theory of ac electro-osmotic(ACEO).The experiments verifies the leading role of electrochemical reaction under low ac frequency,and the result indicates that the leading influencing factor of the phenomenon of microfluidic under low ac frequency in point plane electrode system is electrochemistry.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2011年第5期56-60,共5页 Journal of Harbin Institute of Technology
基金 流体动力与机电系统国家重点实验室开放基金项目(GZKF-201004)
关键词 点面电极 低频 电化学反应 交流电热 point plane electrode; low frequency; electrochemical reaction; ac electrothermal
  • 相关文献

参考文献16

  • 1STUDER V, PEPIN A, CHEN Yong, et al. Fabrication of microfluidic devices for AC electrokinetic fluid pum- ping[J}. Microelectronie Engineering, 2002, 61 (2) : 915 -920.
  • 2STONE H, STROOCK A, AJDABI A. Microfluidic technologies for miniaturized analysis systems[ M]. New York : Springer-Verlag, 2007 : 1 - 3.
  • 3WANG Xiayan, WANG Shili, GENDHAR B, et al. Electroosmotic pumps for microflow analysis[ J ]. Trends in Anylytical Chemistry, 2009, 28 ( 1 ) : 64 - 74.
  • 4CAHILL B P, HEYDERMAN L J, GOBRECHT J, et al. Electro-osmotic streaming on application of traveling- wave electric fields [ J ]. Physical Review E, 2004, 70 (3) : 036 - 305.
  • 5STUDER V, PEPIN A, CHEN Yong, et al. An integrat- ed AC electrokinetic pump in a microfluidic loop for fast and tunable flow control [ J]. The Analyst, 2004, 129 (10) : 944 - 949.
  • 6NG W Y, LAM Y C, RODRIGUEZ I. Experimental verification of faradaic charging in ac electrokinetics [J]. Biomicrofluidics, 2009, 3(2) - 022 -405.
  • 7GARCIA-SANCHEZ P, RAMOS A. Flow reversal in traveling-wave electrokinetics: an analysis of forces due to ionic concentration gradients [ J ]. Langmuir, 2009, 25(9) : 4988 -4997.
  • 8LIAN Meng, ISLAM N, WU Jie. AC electrothermal ma- nipulation of conductive fluids and particles for lab - chip applications [ J ]. IET Nanobiotechnol, 2007, 1(3): 36 -43.
  • 9GARCIA-SANCHEZ P, RAMO A, CASTELLANOS A, et al. Flow of electrolytes induced by AC voltages in a point-plane electrode microsystem [ C]//IEEE Transac- tions on Dielectrics and Eleatrical Insulation. Paris: Springer Paris, 2008 : 1- 4.
  • 10姜洪源,闫宝森,杨胡坤,Ramos Antonio.交流电渗驱动机理及流速计算[J].中国机械工程,2007,18(14):1672-1675. 被引量:7

二级参考文献23

  • 1Stone H A, Stroock A D and Ajdari A 2004 Annual Review Fluid Mechanics 36 381
  • 2Li B X, Ye M Y, Chu Q Y and Yu J 2007 Acta Phys. Sin. 56 3447
  • 3Koch M, Evans A and Brunnschewiler A 2000 Microfluidie Technology and Applications (Herts: Research Studies Ltd)
  • 4Ramos A, Morgan H, Green N G and Castellanos A 1998 J. Phys. D 31 2338
  • 5Bazant M Z and Squires T M 2004 Phys. Rev. Lett. 92 066101
  • 6Sasaki N, Kitamori T and Kim H B 2006 Lab Chip 6 550
  • 7Zhao H and Bau H H 2007 Phys. Rev. E 75 066217
  • 8Green1 N G, Ramos A, Gonzdlez A, Morgan H and Castel- lanos A 2000 Phys. Rev. E 61 4011
  • 9Morgan H, Green N G and Ramos A 2007 Appl. Phys. Lett. 91 254107
  • 10Stratton J A 1941 Electromagnetic Theory (New York: Mcgraw-Hill)

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部