期刊文献+

基于局部曲面逼近的网格光顺算法 被引量:4

Mesh smoothing algorithm based on local surface approximation
下载PDF
导出
摘要 针对光顺带噪声的三角网格模型并使光顺的结果逼近模型的原始设计意图,提出了一种基于局部曲面逼近的网格光顺算法.首先获取顶点的二阶邻域内的顶点信息,利用邻域顶点的多元L1中值获得邻域确定的局部曲面的2次逼近的点集;然后将顶点沿着其法矢方向向该点集上投影,获得顶点在点集上的投影点;最后将顶点移动到投影点的坐标处,得到光顺后的三角网格.该方法在光顺的同时有效地逼近了网格的原始特征.实验结果表明了算法的有效性和鲁棒性. To fair triangular meshes with noise and to approximate the original meshes of the 3D model designed,a smoothing algorithm based local surface approximation is presented.Specific local information of the vertex was acquired and multivariate L1 medians of the neighbor vertexes were used to determine the point set of local second order approximation of surface.The vertex was then projected to the point set along the direction of its normal.The smoothing was finally completed by moving vertex to the position of the projective point.Experiments demonstrates that the algorithm is efficient and robust.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2011年第5期89-93,共5页 Journal of Harbin Institute of Technology
基金 国家高技术研究发展计划资助项目(2007AA04Z137) 国家自然科学基金资助项目(60573177)
关键词 L1中值 局部曲面 二次逼近 投影 光顺 L1 median; local surface; second order approximation; projection; smoothing
  • 相关文献

参考文献17

  • 1TAUBIN G. A signal processing approach to fair surface design [ C]//Proceedings of the 22^nd Annual Conference on Computer Graphics and Interactive Techniques. New York, NY: ACM, 1995:351 -358.
  • 2VOLLMER J, MENCL R, MULLER H. Improved Laplacian smoothing of noisy surface meshes[ J]. Com- puter Graphics Forum, 1999, 18(3): 131-138.
  • 3BAJAJ C L, XU G L. Anisotropic diffusion on surface and function on surfaces [ J], ACM Trans on Graphics, 2003, 22 ( 1 ) : 4 - 32.
  • 4CLARETZ U, DIEWALD U, RUMPF M. Anisotropic geometric diffusion in surface processing[ C ]//Proceed- ings of the 11^th IEEE Visualization 2000 Conference. Washington, DC: IEEE Computer Society, 2000:397 - 400.
  • 5DESBRUN M, MEYER M, SCHRODER P, et al. Im- plicit fairing of irregular meshes using diffusion and cur- vature flow [ C ]//Proceedings of the 26th annual confer- ence on Computer graphics and interaetive techniques. New York, NY: ACM Press/Addison-Wesley Publishing Co, 1999:317-324.
  • 6DESBRUN M, MEYER M, SCHRODER P, et al. Ani- sotropie feature preserving denoising of height field and bivariate data [ J ]. Proc Graphics Interface, 2000: 145 - 152.
  • 7FLEISHMAN S, DRORI I, COHENOR D. Bilateral me- shes denoising [ C ]//Proceeding of SIGGRAPH 2003. New York, NY: ACM, 2003:950-953.
  • 8JONES T-R, DURAND F, DESBRUN M. A Non-itera- tive feature-preservlng mesh smoothing [ C ]//Proceed- ings of SIGGRAPH 2003. New York, NY: ACM, 2003 : 943 - 949.
  • 9胡国飞,彭群生.基于顶点预测的特征保持网格光顺算法[J].浙江大学学报(工学版),2004,38(12):1535-1539. 被引量:11
  • 10毛志红,马利庄,赵明喜.鲁棒估计器在3D网格降噪中的应用[J].软件学报,2007,18(2):453-460. 被引量:7

二级参考文献12

  • 1GUSKOV I, SWELDENS W, SCHRODER P. Multiresolution signal processing for meshes[A]. Proceedings of SIGGRAPH[C]. Los Angeles: ACM, 1999: 325-334.
  • 2FLEISHMAN S, DRORI I, COHEN-OR D. Bilateral mesh denoising[A]. Proceedings of SIGGRAPH[C]. San Diego: ACM, 2003: 950-953.
  • 3TAUBIN G. A signal processing approach to fair surface design[A]. Proceedings of SIGGRAPH [C]. Los Angeles: ACM, 1995: 351-358.
  • 4VOLLMER J, MENCL R, MULLER H. Improved Laplacian smoothing of noisy surface meshes[J]. Computer Graphics Forum,1999, 18(3): 131-138.
  • 5LIU X G, BAO H J, SHUM H Y,et al. A novel volume constrained smoothing method for meshes[J]. Graphics Models,2002, 64(3-4): 169-182.
  • 6OHTAKE Y, BELYAEV A, BOGAEYSKI I. Mesh regularization and adaptive smoothing[J]. Computer-Aided Design, 2001, 33: 789-800.
  • 7JONES T, DURAND F, DESBRUN M. Non-iterative,feature preserving mesh smoothing [A]. Proceedings of SIGGRAPH[C]. San Diego: ACM, 2003: 943-949.
  • 8PINKALL U, POLTHIER K. Computing discrete minimal surfaces and their conjugates[J]. Experimental Mathematics, 1993,2(1):15-36.
  • 9TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images[A]. Proceedings of the Sixth International Conference on Computer Vision[C]. Bombay: Narosa Pablishing House, 1998: 839-846.
  • 10DESBRUN M, MEYER M, SCHRODER P,et al. Implicit fairing of irregular meshes using diffusion and curvature flow[A]. Proceedings of SIGGRAPH [C]. Los Angeles: ACM,1999: 317-324.

共引文献17

同被引文献76

  • 1苏安,冉蜀阳,吴章文,张莉,黄亮.基于相邻层轮廓线几何形状匹配的三维重建[J].计算机应用,2009,29(2):450-452. 被引量:7
  • 2段宝山,潘振宽.医学断层图像三维重建的辅助轮廓线法[J].计算机辅助设计与图形学学报,2005,17(8):1862-1866. 被引量:16
  • 3毛志红,马利庄,赵明喜.鲁棒估计器在3D网格降噪中的应用[J].软件学报,2007,18(2):453-460. 被引量:7
  • 4Di Angelo L,Di Stefano P.Experimental comparison of methods for differential geometric properties evaluation in triangular meshes[J].Computer-Aided Design and Applications,2011,8 (2):193-210.
  • 5Hyun Soo Kim,Han Kyun Choi,Kwan H Lee.Feature detection of triangular meshes based on tensor voting theory[J].Computer-Aided Design,2009,41 (1):47-58.
  • 6Kim Hyoung-Seok,Kim Ho-Sook.New computation of normal vector and curvature[J].Wseas Transactions on Computers,2009,8 (10):1661-1670.
  • 7Chen Yueping,Gao Jian,Wen Hao,et al.Estimation normal vector of triangular mesh vertex by angle and centroid weights and its application[J].TELKOMNIKA,2013,11 (4):1841-1848.
  • 8Van Nunen DP, Janssen LE, Stubenitsky BM, et al. Stereolithographic skull models in the surgical planning of fronto-supraorbital bar advancement for non-syndromic trigonocephaly.J Craniomaxillofac Surg 2014;42(6):959-965.
  • 9Ohtake Y, Belyaev A, Seidel HP. An integrating approach to meshing scattered point data. Proceedings of ACM Symposium on Solid and Physical Modeling. 2005:61-69.
  • 10Chan TF, Vese LA.Active contours without edges.lEEE Trans Image Process. 2001;10(2):266-277.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部