期刊文献+

基于MG-HMT模型的正交有限脊波域图像分割

Image Segmentation Based on MG-HMT Model in Orthonormal Finite Ridgelet Domains
下载PDF
导出
摘要 针对图像分割中的过分割问题,提出了一种基于图像混合高斯-隐Markov树(Mixture Gaussian-hiddenmarkov tree,MG-HMT)模型的正交有限脊波分析的图像分割算法。正交有限脊波变换处理信息时具有检测信号线奇异的能力,在图像分割中为准确定位信息的边缘、轮廓提供了有力的支持。其次,对图像的小波系数建立了混合高斯-隐Markov树(MG-HMT)模型来描述其在不同尺度子带间的相关性,并利用小波系数自身的传递性和同层小波系数相关性进行补偿处理。仿真结果表明,采用本文算法实现的图像分割,有效地检测出图像信息的线奇异,从而减小了由于干扰在梯度图中造成虚假的局部极值而产生的过分割现象,准确地定位了图像的区域信息。 Against the over-segmentation problem,an image segmentation algorithm based on mixture Gaussian-hidden Markov tree(MG-HMT) model in orthonormal finite ridgelet domains is proposed.Orthonormal finite ridgelet transform is used to detect the signal line singularity and accurately located the edge and contour in the image segmentation;then a MG-HMT model is built to describe the subband correlationship of different scales by the wavelet coefficients.Moreover,the edge and contour are compensated with the wavelet coefficient self-transitivity and the correlationship of the same scale.Simulation results show that the proposed image segmentation algorithm effectively detects the image line singularity and reduces the over-segmentation phenomenon produced by the false local extremum of the interference in the gradient map.Finally,the image regions are accurately located.
出处 《数据采集与处理》 CSCD 北大核心 2011年第3期308-313,共6页 Journal of Data Acquisition and Processing
基金 湖北省教育厅自然科学基金(D200513001)资助项目 宜昌市科技发展计划(A2007107-08)资助项目
关键词 图像分割 正交有限脊波分析 混合高斯-隐Markov树模型 RADON变换 image segmentation orthonormal finite ridgelet transform(OFRIT) mixture Gaussian-hidden Markov tree(MG-HMT) model Radon transform
  • 相关文献

参考文献13

  • 1Kim J B, Kim H J. A wavelet-based watershed image segmentation for VOP generation[J]. EEE International Conference on Pattern Recognition, 2002,2 (1) : 505-508.
  • 2王鹏伟,吴秀清,张名成.基于多尺度形态学融合的分水岭图像分割方法[J].数据采集与处理,2006,21(4):398-402. 被引量:9
  • 3Minh N D, Martin V. The finite ridgelet transform for image representation[J]. IEEE Trans on Image Processing, 2003,12(1) : 16-28.
  • 4Donoho D L. Orthonormal ridgelets and linear singularities[J]. SIAM Journal on Mathematieal Analysis, 2000,31(5) :1062-1099.
  • 5Do M N, Vetterli M. Orthonormal finite ridgelet transform for image compression[C]//Proc of IEEE International Conference on Image Processing (ICIP). Vancouver, Canada: IEEE, 2000:367-370.
  • 6Matus F, Flusser J. Image representations via a finite radon transform [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1993, 15 (10): 996-1006.
  • 7白键,冯象初.图像处理的一种有限脊波自适应方法[J].电子学报,2006,34(6):1058-1061. 被引量:3
  • 8Crouse M S, Nowak R D, Baraniuk R G. Waveletbased statistical signal processing using hidden Markov models[J]. IEEE Trans on Signal Processing, 1998,46(4):886-902.
  • 9Choi H, Baraniuk R. Multiscale document segmentation using wavelet domain hidden Markov models [J]. IEEE Trans on Image Processing, 2001,10(9): 1309-1321.
  • 10Romberg J K, Choi H, Baraniuk R G. Bayesian tree-structured image modeling using wavelet-domain hidden Markov models[J]. IEEE Trans on Image Processing, 2001,10(7) : 1056-1068.

二级参考文献37

  • 1侯彪,刘芳,焦李成.基于小波变换的高分辨SAR港口目标自动分割[J].红外与毫米波学报,2002,21(5):385-389. 被引量:16
  • 2焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 3[1]Canny J F.A computational approach to edge detection[J].IEEE Transactions on PAMI,1986,8(6):679-698.
  • 4[2]Vincent L,Soille P.Watersheds in digital spaces:an efficient algorithm based on immersion simulations[J].IEEE Transactions on PAMI,1991,13 (6):583-598.
  • 5[3]Wang Jia,Lu Hanqing,Eude G,et al.A fast region merging algorithm for watershed segmentation[C]//ICSP'04 7th International Conf.Beijing:IEEE,2004,9:781-784.
  • 6[4]Zhu Hao,Liu Wenyao,Wang Jintao.Implementation of a novel watershed algorithm[C] // Microwave,Anterna,Propagation and EMC Technologies for Wireless Communication.Tianjin:IEEE,2005,8:1150-1153.
  • 7[5]Braga-Neto U,Goutsias J.Object-based image analysis using multiscale connectivity[J].IEEE Transactions on PAMI,2005,27(6):892-907.
  • 8[6]Scheunders P.A multivalued image wavelet representation based on multiscale fundamental forms[J].IEEE Transactions on Image Processing,2002,11 (5):568-575.
  • 9[7]Nikolov S G,Bull D R,Canagarajah C N.Fusion of 2-D images using their multiscale edges[C]//15th International Conf on Pattern Recognition.Bristol:IEEE,2000,7:41-44.
  • 10[8]Wong A K C,Sahoo P K.A gray-level threshold selection method based on maximum entropy principle[J].IEEE Transactions on Systems,Man and Cybernetics,1989,19(4):866-871.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部