期刊文献+

RBNS的线性预测模型 被引量:1

Linear Prediction Model for RBNS
下载PDF
导出
摘要 传统的准备金方法都是基于聚合数据的,聚合数据是个体数据的汇总,它们丢失了许多有用信息,影响了准备金预测的准确性.本文提出了一个基于个体数据的线性预测模型,该模型不需要对数据的矩的具体形式进行假设,更不需要对数据的分布进行假设,而只需假设个体索赔数据的前两阶矩存在,具有适用范围广,简单易操作等特点.在文章的最后,通过随机模拟把提出的方法与著名的链梯法进行了对比,模拟结果显示,本文提出的方法是行之有效的. The traditional claims reserving approaches are all based on the aggregated data and usually produce inaccurate predictions of the reserve because the aggregated data usually failed to use all the information of the individual claims. A linear prediction model based on the individual claims is proposed in this papery in which only the second order moment of the data is required. This method is flexible and simple and hence easy to apply in reality. The proposed method is compared with the traditional chain ladder method via a simulation study as well, and the simulation results illustrate that the proposed approach performs well.
出处 《应用概率统计》 CSCD 北大核心 2011年第2期194-209,共16页 Chinese Journal of Applied Probability and Statistics
基金 上海市哲学社会科学基金(2010BJB004) 国家自然科学基金(71071056)资助
关键词 准备金 RBNS 线性预测 链梯法 Claims reserves RBNS linear prediction chain Ladder
  • 相关文献

参考文献19

  • 1Anderson, T.W., Maximum likelihood estimates for multivariate normal distributioin when some observations are missing, Journal of the American Statistical Association, 52(1957), 200-203.
  • 2Antonio, K., Beirlant, J., Hoedemakers, T. and Verlaak, R., Lognormal mixed models for reported claims reserves, North American Actuarial Journal, 10(1)(2006), 30-48.
  • 3Batsidis, A. and Zografos, K., Statistical inference for location and scale of elliptically contoured models with monotone missing data, Journal of Statistical Planning and Inference, 136(2006), 2606- 2629.
  • 4England, P. and Verral, R., Stochastic claims reserving in general insurance, Research Report of Institute of Actuaries and Faculty of Actuaries, (2002): 1-76.
  • 5Goovaerts, M.J., Effective Actuarial Methods (Insurance Series, No. 3), North Holland, 2006.
  • 6Haastrup, S. and Arjas, E., Claims reserving in continuous time: a nonparametric Bayesian approach, ASTIN Bulletin, 26(2)(1996), 139-164.
  • 7Jewell, W., Predicting IBNYR events and delays I. Continuous time, ASTIN Bulletin, 19(1)(1989), 25-56.
  • 8Jewell, W., Predicting IBNYR events and delays II. Discrete time, ASTIN Bulletin, 20(1)(1990), 93-111.
  • 9Kotz, S., Balakrishnan, N. and Johnson, N.L., Continuous Multivariate Distribution, Vol. 1: Models and Applications, Wiley Interscience, New York, 2000.
  • 10Larsen, C.R., An individual claims reserving model, ASTIN Bulletin, 37(1)(2007), 113-132.

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部