期刊文献+

基于改进水平集的多运动目标检测方法 被引量:4

Method of Detecting Multiple Moving Object Based on Improved Level Set
下载PDF
导出
摘要 针对多目标检测中目标和阴影连接导致检测失败的问题,提出一种基于改进水平集的精确检测方法.通过对监控视频进行对称差分获取运动信息,将其融合到水平集演化函数中,然后进行一次分割得到演化曲线,以此获得目标的位置信息.根据目标与阴影的差异信息,调整水平集演化函数,进行二次分割可准确分离多个目标及其阴影.将文中方法应用在公路监控的多运动车辆检测实验中,能够有效地检测出运动车辆轮廓,处理速度为24帧/s,消除阴影的准确率达98.6%,取得了准确的检测效果. In the case of multiple moving object detection, the join of objects and shadow always leads to the failure of object detection. To solve this problem, an improved level set method is proposed. Moving information is extracted via symmetrical difference and it is merged into the velocity function of level set. The evolved curve is obtained after the first segmentation, hence the information of object location could be found. According to the information difference between object and shadow, the velocity function of lever set should be adjusted or modified. After the second segmentation, the multiple objects and their shadow can be separated accurately. The proposed method has been tested to detect moving object in motorway monitoring system. Experimental results show that the proposed algorithm is able to extract the contour of moving object effectively. Its processing speed is 24 frame/s and accuracy rate of shadow elimination reaches 98.6 %.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2011年第5期557-561,共5页 Transactions of Beijing Institute of Technology
基金 北京市科研基金资助项目(1010013020105)
关键词 多目标检测 水平集 统计图像势能 阴影消除 multiple object detection level set statistical image energy shadow elimination
  • 相关文献

参考文献5

  • 1Stauffer C, Grinson W. Adaptive background mixture models for real-time tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S. l. ] : IEEE, 1999 : 246 - 252.
  • 2Haritaoglu I, Harwood D, Davis L. W4: real-time surveillance of people and their activities [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8):809 - 830.
  • 3Kass M, Witkin A, Terzopoulos D. Snakes: active contour models[J]. International Journal of Computer Vision, 1987,1(4) : 321 - 331.
  • 4Rad R, Jamzad M. Real time classification and tracking of multiple vehicles in highways[J]. Pattern Recognition Letters, 2005, 26: 1597-1607.
  • 5Yilmaz A, Li X, Shan M. Contour based object tracking with occlusion handling in video acquired using mobile cameras[J]. IEEE Trans Patt Analy Mach Intell, 2004, 26(11) :1531 - 1536.

同被引文献50

  • 1钱芸,张英杰.水平集的图像分割方法综述[J].中国图象图形学报,2008,13(1):7-13. 被引量:48
  • 2郝中华,倪远平.昆虫图像分割方法的研究及应用[J].云南大学学报(自然科学版),2009,31(S2):67-72. 被引量:2
  • 3于慧敏,尤育赛.基于水平集的多运动目标检测和分割[J].浙江大学学报(工学版),2007,41(3):412-417. 被引量:15
  • 4Kanhere N K, Birchfield S T. A taxonomy and analysis of camera cali- bration methods for traffic monitoring applications. IEEE Trans Intell Transp Syst, 2010 , 11 ( 2 ) :441-452.
  • 5Pang C C C, Lam W W L, Yung N H C. A method for vehicle count in the presence of multiple-vehicle occlusions in trafficc images. IEEE Trans. Intell. Transp. Syst, 2007, 8(3):441---459.
  • 6Tsai L W, Hsieh J W, Fan K C. Vehicle detection using normalizedcolor and edge map. IEEE Trans. Image Process, 2007, 16 (3): 850--864.
  • 7Buch N, Velastin S A, Orwell J. A review of computer vision tech- niques for the analysis of urban traffic. IEEE Trans Intell Transp Syst, 2011 ,12(3) :920---939.
  • 8陈波,赖剑煌.用于图像分割的活动轮廓模型综述[J].中国图象图形学报,2007,12(1):11-20. 被引量:54
  • 9Fernandez-Caballero A, Castillo J C, Serrano-Cuerda J, et al. Real-time human segmentation in infrared videos [ J ]. Expert Systems with Applications, 2011, 38 ( 3 ) : 2577 - 2584.
  • 10Li J, Gong W, Li W, et al. Robust pedestrian detection in thermal infrared imagery using the wavelet transform [ J ]. In- frared Physics & Technology, 2010, 53(4 ) : 267- 273.

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部