期刊文献+

定常Navier-Stokes方程的三种两层稳定有限元算法计算效率分析 被引量:2

COMPUTATION EFFICIENCY ON THREE KINDS OF TWO-LEVEL STABILIZED FINITE ELEMENT METHODS FOR STATIONARY NAVIER-STOKES EQUATIONS
原文传递
导出
摘要 讨论分析了定常Navier-Stokes(N-S)方程的三种两层稳定有限元算法.它们将局部高斯积分稳定化技术和两层算法的思想充分结合,采用不满足Inf-Sup条件的低次等价有限元P_1-P_1或Q_1-Q_1对N-S方程进行数值求解,在粗网格上解定常N-S方程,在细网格上只需求解一个Stokes方程.误差分析和数值实验都表明,当它们的粗、细网格尺度比分别为H=h^(1/3)| logh|^(-1/6),H=O(h^(1/2))和H=O(h^(1/2))时,它们与在细网格上的标准有限元算法具有相同的收敛速度.而两层稳定有限元算法却节省了大量的计算时间.相比之下,简单两层稳定有限元算法具有更高的计算效率,Oseen两层算法次之,Newton两层算法较低而且进一步发现较小粘性系数对Newton两层算法数值精度影响较大. In this paper, three kinds of two-level stabilized finite element methods based on local Gauss integral technique for the two-dimensional stationary Navier-Stokes equations approx- imated by the lowest equal-order P1-P1 or Q1-Q1 elements while do not satisfy the inf-sup condion are considered. The two-level methods consist of solving a small non-linear system on the coarse mesh and then solving a linear system on the fine mesh. The error analysis shows that the two-level stabilized finite element methods provide an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution solving the Navier-Stokes equations on a fine mesh for a related choice of mesh widths H = hl/3| log h|-1/6, H = O(h1/2) and H = O(h1/2) Therefore, the two-level methods are of practical importance in scientific computation. Finally, the performance of three kinds of two-level stabilized methods are compared in efficiency and precision aspects by a seriesof numerical experiments. The conclusion is that the simple two-level stabilized methods is best than the others in accuracy and efficiency. And, there is poor numerical accuracy for the Newton algorithm to N-S equations with low viscosity coefficient.
作者 杨建宏
出处 《数值计算与计算机应用》 CSCD 北大核心 2011年第2期117-124,共8页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金(11071193) 宝鸡文理学院重点科研项目基金(ZK10113)
关键词 定常Navier—Stokes方程 稳定有限元方法 局部高斯积分方法 INF-SUP条件 两层有限元方法 steady Navier-Stokes equations stabilized finite element method localGauss integral inf-sup condition two-level method
  • 相关文献

参考文献14

  • 1He Yinnian, Li Jian. A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations[J]. Appl Numer Math., 2008, 58 (10): 1503-1514.
  • 2Li Jian. Investigations on two kinds of two-level stabilized finite element methods for the stationary Navier-Stokes equations[J]. Appl Math Comput., 2006, 182(2): 1470-1481.
  • 3Bochev P B,Dohrmann C R,Gunzburger M D, et al. Stabilization of low-order mixed finite elements for the stokes equations [J]. SIAM J Numer Anal., 2006, 44(1): 82-101.
  • 4Temam R. Navier-Stokes equations, theory and numerical analysis[M], third ed, Amsterdam: North-Holland, 1983.
  • 5Girault V, Raviart P A. Finite element method for Navier-Stokes equations: theory and algorithms[M]. Berlin, Heidelberg: Springer-Verlag, 1987.
  • 6He Yinnian, Wang Aiwen, Mei Liquan, et al. A stabilized finite element method for the stationary Navier-Stokes equations[J]. Eng Math., 2005, 51(4): 367-380.
  • 7Li Jian, He Yinnian. A stabilized finite element method based on two local Gauss integral technique for the stationary Stokes equations [J]. J Comp Appl Math., 2008, 214(1): 58-65.
  • 8Li Jian, He Yinnian, Chen Zhangxin, et al. A new stabilized finite element method for the transient Navier-Stokes equations[J]. Comp Meth Appl Mech Eng., 2007, 197(4): 22-35.
  • 9He Yinnian, Li Kaitai. Two-level stabilized finite element methods for the steady Navier-Stokes problem[J]. Computing, 2005, 74(4): 337-351.
  • 10Xu Jinchao. A novel two-grid method for semilinear elliptic equations[J]. SIAM J Sci Comput., 1994, 15(1): 231-237.

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部