摘要
采用余弦微分求积法(CDQM)对(1+1)维非线性KdV-Burgers方程进行了数值求解.结果表明,所得数值解与方程的精确解相比具有明显的高精度且稳定性高,相对于其他常用方法,且公式简单,使用方便;计算量小,时间复杂性好.
The cosine expansion based differential quadrature method(CDQM) has been used to obtain numerical solutions to the (l+l)-dimensional nonlinear KdV-Burgers equation. The numerical solutions are compared with the exact solutions, The results show that the nu- merical solutions are in good agreement with the exact solutions. Compared with someregulate methods; the computation efforts are relatively smaller and the time of computa- tion is shorter, it is also seen that the formulas of the method are very simple and easy to use.
出处
《数值计算与计算机应用》
CSCD
北大核心
2011年第2期125-134,共10页
Journal on Numerical Methods and Computer Applications
基金
教育部科学研究重点项目(209128)
西北师范大学科技创新工程重点项目(nwnu-kjcxgc-03-53)