期刊文献+

用余弦微分求积法数值求解KdV-Burgers方程

NUMERICAL SOLUTIONS OF KDV-BURGERS EQUATION BY COSINE EXPANSION BASED DIFFERENTIAL QUADRATURE METHOD
原文传递
导出
摘要 采用余弦微分求积法(CDQM)对(1+1)维非线性KdV-Burgers方程进行了数值求解.结果表明,所得数值解与方程的精确解相比具有明显的高精度且稳定性高,相对于其他常用方法,且公式简单,使用方便;计算量小,时间复杂性好. The cosine expansion based differential quadrature method(CDQM) has been used to obtain numerical solutions to the (l+l)-dimensional nonlinear KdV-Burgers equation. The numerical solutions are compared with the exact solutions, The results show that the nu- merical solutions are in good agreement with the exact solutions. Compared with someregulate methods; the computation efforts are relatively smaller and the time of computa- tion is shorter, it is also seen that the formulas of the method are very simple and easy to use.
出处 《数值计算与计算机应用》 CSCD 北大核心 2011年第2期125-134,共10页 Journal on Numerical Methods and Computer Applications
基金 教育部科学研究重点项目(209128) 西北师范大学科技创新工程重点项目(nwnu-kjcxgc-03-53)
关键词 KdV—Burgers方程 余弦微分求积法(CDQM) 数值解 KdV-Burgers equation Cosine Expansion Based Differential QuadratureMethod(CDQM) Numerical solution
  • 相关文献

参考文献8

  • 1Bellman R E, Kashef B G, Casti J. Differential quadrature: A technique for the rapid solution of nonlinear differential equations[J]. J Comput Phys, 1972, 10: 40-52.
  • 2Shu C, Khoo B C, Yeo K S. Numerical solutions of incompressible Navier-Stokes equations by generalized differential quadrature[J]. Finite Elements in Analysis and Design, 1994, 18(1-3):83-97.
  • 3Quan J R, Chang C T. New insightings in involving distributed system equations by the quadrature method-II. Numerical experiments[J]. Comput Chem Engrg, 1989, 13: 1017-1024.
  • 4Bellman R, Kashef Bayesteh, Lee E S, Vasudevan R, Differential Quadrature and Splines[J]. Computers and Mathematics with Applications, 1975, 1(3-4): 371-376.
  • 5Shu C, Wu Y L. Integrated radial basis functions-based differential quadrature method and its performance[J]. Internat J Numer Methods Fluids, 2007, 53: 969-984.
  • 6Striz A G, Wang X, Bert C W. Harmonic differential quadrature method and applications to analysis of structural components[J]. Acta Mech., 1995, 111: 85-94.
  • 7Shu Chang, Differential Quadrature and its Application in Engineering[M]. London: Springer- Verlag, 2000.
  • 8Su C H, Gardner C S. Korteweg-deVries equation Korteweg-deVries equation and Burgers equation[J]. and generalizations. III. Derivation of the Math. Phys. 1969, 10:536-539.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部