期刊文献+

基于多项扩展式局部方向张量的仿射不变兴趣点检测算子

An affine invariant interest point detector based on polynomial local orientation tensor
下载PDF
导出
摘要 针对基于立体视觉的移动机器人导航中摄像机视角及光线亮度的变化会使所获得的场景环境图像发生一定的仿射变换,为了选取稳定的图像局部特征点,提出了一种具有仿射不变的兴趣点检测算法——多项局部方向张量(polynomial local orientation tensors,PLOT)算子。PLOT算子是基于图像多项扩展式局部方向张量的兴趣点检测算法,它将图像的每一像素点以多项扩展式的方式展开建立局部图像信号模型,求其对应的局部方向张量,搜索局部方向张量最小特征值的局部邻域最大值,获得对图像兴趣点的初始检测定位,并应用仿射递归算法实现兴趣点及对应特征区域的最终准确检测与定位。基于重复率准则的兴趣点检测实验表明。 Considering that in vision-based transformation because of the changes mobile robot navigation, the scene images captured may undergo a general affine of camera' s visual angle and light brightness, this paper proposes the PLOT (polynomial local orientation tensor) detector, a novel method for detecting scale invariant and rotation interest points to obtain the invariant local features. The detector is based on the local orientation tensor, which is constructed from the polynomial expansion of the image signal. The initial interest points are detected by local maxima search for the small eigenvalues of the orientation tensor. Then an iterative procedure is used to allow the initial points to converge to affine invariant points and regions. The results of the experiment on interest point detection based on the repeatability criteria show the PLOT detector's strong performance in different rotations when camera's viewpoints and illumination change.
出处 《高技术通讯》 CAS CSCD 北大核心 2011年第5期509-515,共7页 Chinese High Technology Letters
基金 863计划(2007AA041501)资助项目.
关键词 兴趣点检测算子 图像多项扩展式 局部方向张量 仿射不变 interest point detector, image polynomial expansion, local orientation tensor, affine invariant
  • 相关文献

参考文献21

  • 1Ali A M, Jan Nordin M. Vision based reconstruction multi- clouds of scale invariant feature transform features for indoor navigation. Journal of Computer Science, 2009, 5(12) : 951- 958.
  • 2Se S, Jasiobedzki P. Stereo-vision based 3D modeling and lo- calization for unmanned vehicles. International Journal of In- telligent Control and Systems, 2008, 13( 1 ) :46-57.
  • 3Se S, Lowe D G, Little J I. Vision-based global localization and mapping for mobile robots. 1EEE Transations on Robotics, 2005, 21(3): 364-375.
  • 4Bay H, Tuytelaars T, Cool L V. SURF: speeded up robust features. In: Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, 2006. 404-417.
  • 5Harris C, Stephens M. A combined comer and edge detector. In: Proceedings of the 4th Alvey Vision Conference, Manch- ester, UK, 1988. 147-151.
  • 6Mikolajczyk K, Schmid C. Scale & affine invariant interest point detectors. International Journal of Computer Vision, 2004, 1(60):63-86.
  • 7Mikolajczyk K, Tuytelaars T, Schmid C, et al. A comparison of arlene region detectors. International Journal of Computer Vizion, 2005, 65(1/2): 43-72.
  • 8Tuytelaars T, Cool L V. Matching widely separated views based on affine invariant reg, ons. International Journal on Computer Vision, 2004, 59(1):61-85.
  • 9Kadir T, Zisserman A, Brady M. An affine invariant salient region detector. In: Proceedings of the 8th European Confer- ence on Computer Vision, Prague, Czech Republic, 2004. 345-457.
  • 10Matas J, Churn O, Urban M, et al. Robust wide-baseline stereo from maximally stable extremal regions. Image and Vi- sion Computing, 2004, 22(10):761-767.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部