期刊文献+

高维多目标进化算法中的密度评估策略研究 被引量:4

Density estimation strategies in high-dimensional MOEAs
下载PDF
导出
摘要 多目标进化算法中常引入密度评估策略来使算法获得更好的分布性和收敛性.但对于高维多目标问题,现有的密度评估策略却难于达到这一目的.为此更全面地考虑目标空间上各子目标的影响,提出了四种新的密度评估策略,并将其应用到经典多目标进化算法SPEA2中.在4~9个目标的多目标背包问题上的实验结果表明,采用新的密度评估策略的SPEA2算法能更有效地收敛到Pareto前沿. A density estimation strategy is often adopted in order to guarantee better distribution and convergence in MOEA. But the current density estimation strategies cannot achieve this goal when the number of objectives become large. Each objective was more generally considered and four novel strategies of density estimation were proposed. Then, they were applied in SPEA2, which was one of the classical MOEAs. The experimental results of the test cases of MOKP with 4 to 9 objectives show that SPEA2 with the novel strategies have better convergence to the Pareto front on all test cases.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2011年第4期353-361,共9页 JUSTC
基金 国家自然科学基金委海外青年学者合作研究基金(60428202)资助
关键词 多目标优化 多目标0/1背包问题 多目标进化算法 密度评估策略 multiobjective optimization multiobjective 0/1 knapsack problem evolutionary multiobjective optimization density estimation strategy
  • 相关文献

参考文献18

  • 1Deb K.Multi-Objective Optimization using Evolutionary Algorithms[M].Chicester,UK:John Wiley & Sons,2001.
  • 2谢涛,陈火旺,康立山.多目标优化的演化算法[J].计算机学报,2003,26(8):997-1003. 被引量:126
  • 3赵曙光,焦李成,王宇平,杨万海.基于均匀设计的多目标自适应遗传算法及应用[J].电子学报,2004,32(10):1723-1725. 被引量:10
  • 4Coello Coello C A.Evolutionary multi-objective optimization:A historical view of the field[J].IEEE Computational Intelligence Magazine,2006,1 (1):28-36.
  • 5Chan T M,Man K F,Tang K S,et al.A jumping gene paradigm for evolutionary multiobjective optimization[J].IEEE Transactions on Evolutionary Computation,2008,12(2):143-159.
  • 6Zitzler E,Laumanns M,Thiele L.SPEA2:Improving the strength Pareto evolutionary algorithm[R].TIK-Report 103,Computer Engineering and Networks Laboratory (TIK),Swiss Federal Institute of Technology,2001.
  • 7Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 8Knowles J D,Come D W.Approximating the nondominated front using the Pareto archived evolution strategy[J].Evolutionary Computation,2000,8(2):149-172.
  • 9Purshouse R C,Fleming P J.Evolutionary manyobjective optimisation:An exploratory analysis[C] //Proceedings of the Congress on Evolutionary Computation.Canberra,Australia:IEEE Press,2003:2 066-2 073.
  • 10Praditwong K,Yao X.How well do multi-objective evolutionary algorithms scale to large problems[C] //Proceedings of IEEE Congress on Evolutionary Computation.Singapore:IEEE Press,2007:3 959-3 966.

二级参考文献34

  • 1Charnes A, Cooper W W. Management Models and Industrial Applications of Linear Programming, Volume 1. New York:John Wiley, 1961.
  • 2Ijiri Y. Management Goals and Accounting for Control. Amsterdan: North Holland, 1965.
  • 3Hajela P, Lin C Y. Genetic search strategies in multicriterion optimal design. Structural Optimization, 1992, 4 : 99 - 107.
  • 4Chen Y L, Liu C C. Multiobjective VAR planning using the goal-attainment method, IEE Proceedings on Generation,Transmission and Distribution, 1994,141 (3) :227 -232.
  • 5Coello C A C, Christiansen A D, Aguirre A H. Using a new GA- based multiobjective optimization technique for the design of robot arms. Robotica, 1998,16:401-414.
  • 6Fujita K, Hirokawa N, Akagi S, Kitamura S, Yokohata H.Multi-objective optimal design of automotive engine using genetic algorithm. In: Proceedings of DETC'98-ASME Design Engineering Technical Conferences, 1998.
  • 7Cvetkovic D, Parmee I C. Genetic algorithm-based multi-objective optimization and conceptual engineering design, Washington DC, 1999. 29-36.
  • 8Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms-a comparative case study. In: Eiben A E.Back T, Schoenauer M, Schwefel H P eds. Parallel Problem Solving from Nature, Berlin, Germany: Springer, 1998. 292-301.
  • 9Knowles J, Corne D. The Pareto archived evolution strategy:A new baseline algorithm for multiobjective optimization. In:Proceedings of the 1999 Congress on Evolutionary Computation, Washington DC, 1999. 98-105.
  • 10Coello C A C, Christiansen A D. Two new GA- based methods for multiobjective optimization. Civil Engineering Systems,1998, 15(3) :207-243.

共引文献133

同被引文献27

  • 1陈志千,吴旋.基于多目标进化算法的地图注记自动配置技术的研究[J].测绘与空间地理信息,2012,35(4):217-220. 被引量:1
  • 2FOSTER I,KESSELMAN C.网格计算[M].金海,袁平鹏,石柯,译.北京:电子工业出版社,2004.
  • 3Fonseca C M, Fleming P J. Genetic algorithms for multiob-jective optimization: Formulation, discussion and generali- zation[ C]// Proc. of the 5th Int' 1 Conf. on Genetic Mgo- rithms. 1993:416-423.
  • 4Deb K, Pratap A, Agarwal S, et al. A fast and elitist mul- tiobjective genetic algorithm: NSGA-II[ J]. IEEE Transac- tions on Evolutionary Computation, 2002,6 (2) : 152-197.
  • 5Zitzler E, Laumanns M, Thiele L. SPEA2 : Improving the strength Pareto volutionary algorithm [ C ]//Proceedings of the EUROGEN'2001. Athens,Greece, 2001:95-100.
  • 6张磊.数据挖掘聚类算法研究与系统设计[D].成都:电子科技大学,2003.
  • 7平源.基于支持向量机的聚类及文本分类研究[D].北京:北京邮电大学,2012.
  • 8马强.关联规则挖掘算法研究和应用[D].太原:太原理工大学,2004.
  • 9IBM Corp. International Technical Support Organization Introduction to Grid Computing with Globus [ S]. 2003:131 - 145.
  • 10NAGGER R. Windows NT File System Internals : A Developer' s Guide [ M ]. 1st ed. [ S. 1. ] : O'Reilly, 1997, 9 : 123 - 165.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部