期刊文献+

Logistic回归分析在超声多因素鉴别乳腺良恶性肿瘤中的应用 被引量:2

Application value of Logistic regression analysis in differential diagnosis of malignant and benign breast tumors by ultrasonic multiple factors
下载PDF
导出
摘要 目的探讨Logistic回归分析在超声多因素鉴别乳腺良恶性肿瘤中的应用价值。方法选取经手术病理证实的乳腺恶性肿瘤患者119例,良性肿瘤患者47例,分析其声像图特征,包括乳腺肿块内部和后方回声、边缘特征、血流分布、收缩期峰值血流速度(PSV)及阻力指数(RI)。对所有患者的声像图特征行单因素分析,将有统计学差异的指标作多因素Logistic回归分析。结果超声诊断乳腺恶性肿瘤111例,误诊8例,良性肿瘤44例,误诊3例,其对恶性肿瘤诊断的准确性、特异性及敏感性分别为93.4%、93.6%及93.3%,阳性预测值和阴性预测值分别为97.4%和84.6%。单因素分析显示所有观察指标在乳腺良恶性肿瘤的鉴别诊断中差异均有统计学意义(P<0.05)。多因素分析显示边缘毛刺、微钙化、血流分布、阻力指数及纵横比>1与乳腺恶性肿瘤有显著相关性(P<0.05)。结论超声多因素分析对乳腺良恶性肿瘤的鉴别诊断有重要价值。 Objective To investigate the application value of Logistic regression analysis in differential diagnosis of benign and malignant breast tumors by ultrasonic muhiple factors. Methods One hundred and nineteen patients with inalignant tumors and 47 patients with benign tumors confirmed by surgery and pathology were enrolled in this study. Their sonography features were analyzed, including internal and posterior echo, peripheral features, blood distribution, peak systolic velocity (PSV) and resistance index(RI). The single factor analysis was performed on the sonography features of all the patients, the multiple factors Logistic regression analysis was performed on indexes with significant difference. Results There were 111 cases of malignant breast tumors diagnosed by ultrasound, 8 cases were misdiagnosed, and 44 cases of benign breast tumors diagnosed by ultrasound, 3 cases were misdiagnosed. The accuracy, specificity and sensitivity of uhrasonography in diagnosis of malignant tumors were 93.4% , 93.6% and 93.3% , respectively, the positive predictive value and negative predictive values were 97.4% and 84.6%. Single factors analysis showed there was significant difference of all the indexes between benign and malignant tumors (P 〈 0.05 ). Multiple factors analysis showed the edge burr, microcalcification, blood distribution, RI and vertical / horizontal ratio 〉 1 were related with malignant breast tmnors (P 〈 0.05). Conclusion Ultrasonic muhiple factors analysis has important value in differential diagnosis of benign and malignant breast tumors.
出处 《临床超声医学杂志》 2011年第3期169-172,共4页 Journal of Clinical Ultrasound in Medicine
关键词 乳腺肿瘤 良恶性 超声检查 LOGISTIC回归分析 Breast tumor, benign and malignant Ultrasonography Logistic regression analysis
  • 相关文献

参考文献3

二级参考文献19

  • 1李琦,高玉堂,刘大可,李泓澜.上海市不同出生队列妇女月经生育等因素变化趋势分析[J].肿瘤,2004,24(6):530-533. 被引量:11
  • 2孙国桢.上海人口老龄化对医疗保障压力的对策研究[J].中国卫生资源,2001,4(2):86-88. 被引量:15
  • 3廖彩森 张绍基 杨学志.宫颈癌流行因素分析-306对配对调查.中华肿瘤杂志,1986,8(6):444-444.
  • 4Birdwell RL, Ikeda DM, Jeffrey SS. Preliminary experience with power Doppler imaging of solid breast masses. Am J Roentgenol, 1997,69: 703-707.
  • 5Bassett LW, Kimme-Smith C. Breast sonography: technique, equipment, and normal anatomy. Smin Ultrasound CT MR, 1989,10:82-89.
  • 6Harper P. Ultrasound mammography. Baltimore: University Park Press, 1985.123-127.
  • 7Schneck CD, Lehman DA. Sonographic anatomy of the breast. Seminars in Ultrasound, 1982,3:13-33.
  • 8Kossoff G. Causes of shadowing in breast sonography. Ultrasound Med Biol,1988,14:211-215.
  • 9Schoenberger SG, Sutherland CM, Robinson AE. Breast neoplasms: duplex sonographic imaging as an adjunct in diagnosis. Radiology, 1988,168: 665-668.
  • 10Giorggio R. Towards a more sophisticated use of breast ultrasound. Eur Radiol,2001,11:2425-2435.

共引文献92

同被引文献16

  • 1Akihiko Osaki,Tomoyuki Kubota,Takeshi Suda,Masato Igarashi,Keisuke Nagasaki,Atsunori Tsuchiya,Masahiko Yano,Yasushi Tamura,Masaaki Takamura,Hirokazu Kawai,Satoshi Yamagiwa,Toru Kikuchi,Minoru Nomoto,Yutaka Aoyagi.Shear wave velocity is a useful marker for managing nonalcoholic steatohepatitis[J].World Journal of Gastroenterology,2010,16(23):2918-2925. 被引量:31
  • 2许萍,王文平,秦茜淼,王怡.乳腺肿块超声血流显示的影响因素及其良恶性诊断价值[J].中国医学影像技术,2006,22(2):248-250. 被引量:24
  • 3王怡,王涌,张希敏,王意达,周坚.乳腺肿块的超声弹性成像和外科检查的相关性分析[J].中国医学计算机成像杂志,2006,12(1):55-57. 被引量:14
  • 4李晓英,陈海燕,宋树良,韩捷,顾红菊,彭雅雯.乳腺肿块的超声声像图多元回归分析[J].中国误诊学杂志,2007,7(3):419-421. 被引量:7
  • 5骆洪浩,彭玉兰.基于超声图像特征和弹性成像的Logistic模型和神经网络预测乳腺癌的初步研究[D].成都:四川大学,012.
  • 6Lee HJ, Kim EK, Kim MJ, et al. Observer variability of Breast Imaging Reporting and Data System (BI-RADS) for breastultrasound[J]. Eur J Radiol, 2008, 65(2): 293-298.
  • 7American College of Radiology (ACR). Breast Imaging Reporting and Data System (BI-RADS~)[M]. 4th ed. Reston: American College of Radiology: 2003.
  • 8Adler DD, Carson PL, Rubin JM, et al. Doppler ultrasound color flow imaging in the study of breast cancer: preliminary findings[J]. Ultrasound Med Biol, 1990, 16(6): 553-559.
  • 9Park YM, Park JS, Jung HS, et al. Imaging features of benign adenomyoepithelioma of the breast[J]. Clin Ultrasound, 2013, 41(4): 218-223.
  • 10Costantini M, Belli P, Lombardi R, et al. Characterization of solid breast masses: use of the sonographic breast imaging reporting and data system lexicon[J]. J Ultrasound Med, 2006, 25(5): 649-659.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部