期刊文献+

深部巷道预应力协同支护数值分析 被引量:51

Numerical Analysis of Theory of Pre-Stress Synergetic Support in Deep Mine Roadway
原文传递
导出
摘要 为了改善深部巷道围岩稳定性难以控制这一现状,提出了锚杆、锚索预应力协同支护思想.采用数值模拟的方法对巷道预应力协同支护进行计算与分析.结果表明:在现有的实际支护条件下,高强锚杆需施加40 kN及以上的预应力才能与锚索100 kN以上的预应力相协同;当锚杆、锚索的预应力产生协同作用时,对深部巷道的支护效果明显,巷道周边的应力集中区范围明显减小,应力分布趋于均匀;同时锚杆、锚索的平均利用率都达到0.5以上,且它们之间相差不大,充分发挥了高强锚杆、锚索的受力特性,使锚杆、锚索协同工作,避免了单独依次受力.故应该采用协同支护理论作为深部巷道工程支护设计的理论依据. In order to improve the actuality that the stability of surrounding rocks in deep roadway is difficult to control,we put forward the idea of bolt and cable's pre-stressing synergetic support.Using numerical simulation,we calculated and analyzed the deep roadway supported based on this idea.The results show that,under the current support condition,high-strength bolts must be used with a pre-stressing force greater than 40 kN to cooperate with cables with more than100 kN pre-stressing force.When the pre-stressing force of bolt and cable have a synergistic function,the deep roadway will have an apparent support effect,for example,the stress concentration area surrounding the roadway decreases significantly,and the stress distribution tends to be more uniform.The average utilization rate between bolt and cable has only a little difference and both of them are greater than 0.5,making the mechanical properties of bolts and cables give fully play,avoiding the bolts and cables working separately.So we suggest that the idea of pre-stressing synergetic support can be used as a theoretical foundation for the roadway support design.
出处 《采矿与安全工程学报》 EI 北大核心 2011年第2期204-208,213,共6页 Journal of Mining & Safety Engineering
关键词 协同支护 预应力 锚杆 锚索平均利用率 数值模拟 synergetic support prestress the utilization coefficient of bolt and cable numerical calculation
  • 相关文献

参考文献8

二级参考文献21

  • 1徐则民,黄润秋,王士天.隧道的埋深划分[J].中国地质灾害与防治学报,2000,11(4):5-10. 被引量:50
  • 2郑雨天,朱浮声.预应力锚杆体系──锚杆支护技术发展的新阶段[J].矿山压力与顶板管理,1995,12(1):2-7. 被引量:35
  • 3Sellers E J, Klerck E Modeling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels[J]. Tunneling and Underground Space Technology, 2000, 15(4): 463 - 469.
  • 4Kidybinski A, Strata Control in Deep Mines[M]. Rotterdam: A.A.Balkema, 1990.
  • 5Fairhurst C. Deformation, yield, ruptureand stability of excavations at great depth[A]. In: Faorhurst C ed. Rock at Great Depth[C].Rotterdam: A.A. Balkema, 1990. 1 103 - 1 114.
  • 6Malan D F, Spottiswoode S M. Time-dependent fracture zone behavior and seismicity surrounding deep level stopping operations[A]. In: Gibowicz S J, Lasocki S ed. Rockbursts and Seismicity in Mines[C]. Rotterdam: A. A. Balkema, 1997. 173-177.
  • 7钱七虎.非线性岩石力学的新进展-深部岩体力学的若干问题[A].见:中国岩石力学与工程学会主编.第八次全国岩石力学与工程学术大会沦文集[C].北京:科学出版社,2004.10-17.
  • 8钱七虎.深部地下工空间开发中的关键科学问题[A]..第230次香山科学会议—深部地下空间开发中的基础研究关键技术问题[C].北京:[s.n.],2004..
  • 9Sun Jun, Wang Sijing. Rock mechanics and rock engineering in China: developments and current state-of-the-art[J]. International Journal of Rock Mechanics and Mining Science, 2000, (37):447 - 465.
  • 10古德生.金属矿床深部开采中的科学问题[A].见:香山科学会议主编.科学前沿与未来(第六集)[C].北京:中国环境科学出版社,2002.192-201.

共引文献646

同被引文献380

引证文献51

二级引证文献566

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部